December 7, 2017

MEMORANDUM

TO: Angie Hill Price, Speaker, Faculty Senate
FROM: Andrew Klein, Chair, Core Curriculum Council
SUBJECT: Approval actions of the Core Curriculum Council

On December 4, 2017, the following actions were taken by the Core Curriculum Council:

The following course was approved for addition to the core curriculum. We recommend the Texas A&M University Faculty Senate’s consideration and approval of this course for the core curriculum, effective Fall 2018.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 123</td>
<td>Physics for Future Presidents</td>
<td>Life & Physical Sciences</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Students in Engineering</td>
<td>Life & Physical Sciences</td>
</tr>
<tr>
<td></td>
<td>and Science</td>
<td></td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Students in Engineering and Science</td>
<td>Life & Physical Sciences</td>
</tr>
<tr>
<td>KINE 311</td>
<td>Fundamental Rhythms and Dance</td>
<td>Creative Arts</td>
</tr>
<tr>
<td>ANTH 270</td>
<td>Cultural Diversity and Ethics</td>
<td>Language, Philosophy and Culture</td>
</tr>
</tbody>
</table>
Life & Physical Sciences
Core Curriculum Management

Date Submitted: 11/02/17 3:52 pm

Viewing: PHYS 123-GE 123: Physics for Future Presidents

Last edit: 11/02/17 3:52 pm
Changes proposed by: skessler

Contact(s)

<table>
<thead>
<tr>
<th>Name</th>
<th>E-mail</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sherree Kessler</td>
<td>skessler@tamu.edu</td>
<td>979-458-5948</td>
</tr>
</tbody>
</table>

Course Prefix: PHYS
Course Number: 123

Academic Level: UG

Complete Course Title: Physics for Future Presidents

Abbreviated Course Title: PHYSICS FOR FUTURE PRESIDENTS

Crosslisted With:

Semester Credit: 3

Proposal for: Core Curriculum Addition/Edit

How frequently will the class be offered? Each fall and spring semester

Number of class sections per semester: 3

Number of students per semester: 450

Historic annual enrollment for the last three years

Last year:
Previous year:
Year before:

Recertify for Core Curriculum? No

Core curriculum

Foundational Component Area: Life/Physical Sci (KLPS)

TCCN prefix/number: PHYS 1310

Histopolitical Component Area: Life/Physical Sci

How does the proposed course specifically address the Foundational Component Area definition above?

The purpose of this course is to provide an understanding of a broad range of physics concepts and the scientific method. Students will use the scientific method to understand and describe physics concepts such as energy, power, heat, electricity, light, and nuclear processes. They will use these concepts to think critically about and explain many problems in the world and in modern technology. Students will be able to predict the outcomes of situations in nature and to understand when other predictions are unsound. Application of these principles also will allow students to think critically about many important problems facing society.

Students will be informed of the core objectives being addressed in this core curriculum course as follows: the core objectives will be described in the course syllabus and discussed on the first day of class. Throughout the semester, instructors will highlight how learning opportunities specifically address the core objectives during lectures and class activities.

Core Objectives:
Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

Students will learn many fundamental principles of physics (see course topics in syllabus). Students will be taught the scientific method and the limits of scientific knowledge. They will think about what it means when scientific investigations tell us things. Students will think critically about problems and situations relevant to society by applying those principles and evaluating their correctness. This will require the students to determine which of the fundamental principles of physics are relevant to given problems. Students will then have to organize these thoughts and principles in order to synthesize an effective argument, which they will communicate to the instructor and other students.

Individual student progress is assessed regularly throughout the semester using metrics that include homework, in-class participation via polling, graded student homework, and written responses to questions embedded in exams.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Each week students will find and read an article on physics or technology. These should be articles written for the general population, not scholarly research articles, but they must be serious. Students will write a brief discussion of the physics involved and explain it, in their own words, as if they were science advisor to a policy maker.

Furthermore, students will develop presentations on topics in physics. These presentations will include graphs or other visual presentation of data. Presentations will focus on the science involved in the topic and will include quantitative as well as qualitative arguments. Each student will lead at least one short discussion during the semester.

Individual student progress is assessed regularly throughout the semester using metrics that include presentations by students in the classroom, weekly application of physics principles in written form, in-class participation, and written responses to exam questions.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

Students will learn the important and essential skill of manipulating basic facts. From an understanding of physical principles, students will be able to understand or refute arguments with a few numbers. Some examples would be: How large would a solar farm have to be to power the whole United States? If half our energy were generated by nuclear power, how much more nuclear waste would be created? How much less carbon dioxide would be released, and how would that compare with the rest of the world? Why can't we launch radioactive waste into the sun? Could a massive earthquake sink California into the Pacific Ocean? Could an eruption of the Yellowstone Caldera render the United States uninhabitable? Each of these questions comes up in rational discourse, and each is easily settled with a few basic facts and simple arithmetic. Being able and willing to tell when a simple quantitative argument is right or wrong based on empirical facts is a focus of this class.

Individual student progress is assessed regularly throughout the semester using metrics that include graded quizzes, carefully chosen exam questions, presentations by students in the classroom, and weekly application of physics principles in written form, in-class participation.

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

Students will work in teams to develop presentations on physical topics. Presentations will focus on the science involved in the topic. Presentations should include quantitative as well as qualitative arguments. Each student will lead at least one short discussion him or herself during the semester, with the team serving as backup. Students will learn to support each other when needed, and to politely allow other team members to take the lead when it is their turn.

Individual student progress is assessed regularly throughout the semester based on these presentations.

Please ensure that the attached course syllabus sufficiently and specifically details the appropriate core objectives.

Attach Course Syllabus PHYS 123 - syllabus.pdf
Reviewer Comments Barbara West [barbwest] (11/02/17 3:16 pm): Rollback: Rolled back per request of Dr. Welch for needed updates.
Course title: **Physics For Future Presidents**

Course number: **PHYS-123**

Term: **Fall, 2017.** Meeting times and location TBA.

Course description:

Physics is the liberal arts of high technology. If you understand physics then arguments about technology, energy, nuclear (and otherwise) weapons, climate change, space exploration, and even health care will no longer be intimidating. This course teaches the physics needed to be an effective policy maker or world leader, but it is also appropriate for any citizen, since all citizens need to understand the world in which they live and work. This class will make the fundamental principles of physics comprehensible, and indeed usable, by people who are not in science or math related fields.

A major purpose of this class is to expose students to the scientific method. Students will understand how physical hypotheses are shaped by the collection and analysis of data. Several activities will enforce this including required readings, weekly written analyses of a subject in modern physics, and preparing and delivering presentations that include graphs or other visual presentation of data. Students’ presentations will focus on the science involved in the topic and include quantitative as well as qualitative arguments.

Prerequisites: No prior college level physics or science class is required. Students must be able to perform basic arithmetic (add, subtract, multiply, divide) at least on a calculator, should understand what a square root is, and how to compute exponents with a calculator. Students will have to understand scientific notation for very large and very small numbers, but this will be covered repeatedly in class.

Learning Outcomes:

The purpose of this course is for students to learn the principles of physics and scientific methodology that they need to be scientifically literate members of society with the ability to think critically about many important problems facing society and our country and to be able to discern when information or arguments are scientifically bogus and when they are not founded on rational bases. Students learn to understand and appreciate sound physical arguments, and to be unafraid to critique arguments that are unsound. This will happen through readings, class discussions, writing critiques of science reporting, and by working through some important chains of reasoning.
By the end of the class, students will:

1. Recognize and articulate the scientific method. The scientific method is a broadly successful collection of techniques for acquiring new knowledge. It consists of systematic experimentation (that is, observation and measurement) as well as the formulation of hypotheses that can be tested by experiments. A key feature of the scientific method is that the results of comparison of hypothetical predictions with experimental outcomes are then used to modify the hypotheses, leading to the correction of previous knowledge and the integration of understanding of the whole body of knowledge. Students will recognize the limits of scientific knowledge and how to think about what it means when scientific investigations tell us things.

2. Describe, discuss, and explain the fundamental principles of physics necessary for informed public policy decision-making. The principals considered in this class include energy and power and the physics of explosions; atoms and heat; gravity, force, and space; nuclei and radioactivity including chain reactions, nuclear reactors, and nuclear weapons; electricity and magnetism; waves, including earthquakes and music; visible and invisible light; quantum physics; relativity; and the nature and extent of the universe.

3. Determine which of the fundamental principles are relevant to given problems.

4. Think critically about problems and situations relevant to society by applying those principles.

5. Communicate, both orally and in writing, the physical underpinning of real world problems of relevance to society.

6. Make informed decisions in a highly technical world. An example of this is given in the preface of the book. During a dinnertime discussion of solar energy, a student was told (by a physicist!) that switching to solar power alone is unfeasible because the area of solar cells needed to power the state of California alone would exceed the area of California. Knowing only the rough magnitude of the solar constant and a feel for the efficiency of solar cells, the student was able to refute the claim, which is off by many orders of magnitude.

Instructor:

Name: Dr. George R. Welch
Phone: 979-845-7717
Email: grw@tamu.edu
Office hours and location: TBA
Textbook:

In addition we will make liberal use of the Internet for assigned reading.

Required material:

Students must purchase and register an iClicker. The iClickers will be used for in-class conceptual testing and polling.

Students must have a simple calculator that can add, subtract, multiply, divide, take square roots, and do exponentiation (x^y).

Grading Policy:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-class quizzes (clickers)</td>
<td>20%</td>
</tr>
<tr>
<td>In-class presentations (grade based equally on clarity, accuracy, and teamwork)</td>
<td>20%</td>
</tr>
<tr>
<td>Homework</td>
<td>20%</td>
</tr>
<tr>
<td>Mid-term exam</td>
<td>20%</td>
</tr>
<tr>
<td>Final exam</td>
<td>20%</td>
</tr>
</tbody>
</table>

In-class quizzes will be short, multiple choice, questions that will focus the student on what is being discussed. These will be done with clickers, and will keep the students actively engaged during the class time.

In-class presentations: Students will work in teams to develop presentations on physical topics. These presentations will include graphs or other visual presentation of data. Presentations will focus on the science involved in the topic. Presentations should include quantitative as well as qualitative arguments. Each team will develop a sufficient number of topics so that each team member can lead a short discussion (about five minutes) in class. The grade will be based on the clarity of the presentation, the accuracy of the arguments, and the student’s contribution to the team effort.

Homework: Each week students will find and read an article on physics or technology from a newspaper or magazine (online sources are allowed). It should be a serious article. Students will write a brief discussion of the physics involved and explain it, in their own words, as if they were science advisor to a policy maker. Homework grades will be based on clarity, accuracy, and proper choice of physical principles.
The mid-term exam will be given in class, and the final exam will be at the time scheduled by the university.

Grading Scale:

A: 90-100%
B: 80-89%
C: 70-79%
D: 60-69%
F: <60%

Attendance: Attendance is required.

Absences: If you miss an assignment or exam due to an authorized excused absence as outlined in the university rules, you should attempt to contact me prior to the day of the assignment, but no later than the next class meeting following the missed assignment to arrange to make up the missed assignment. Note: Few conditions qualify as an authorized excused absence, so you must avoid missing class except for extremely serious circumstances. University rules related to excused and unexcused absences are located on-line at http://student-rules.tamu.edu/rule07.

Course topics and schedule:

Week 1: Energy and power and the physics of explosions.

Week 2: Atoms and heat.

Week 3: Gravity, force, and space.

Week 4: Nuclei and radioactivity.

Week 5: Chain reactions, nuclear reactors, and nuclear weapons.

Week 6: Exam 1 and electricity and magnetism.

Week 7: More electricity and magnetism.

Week 8: Waves, including earthquakes and music.

Week 9: Light.

Week 10: Invisible light.

Week 11: Climate change.

Week 12: Quantum physics.
Week 13: Relativity.

Week 14: The Universe.

Americans with Disabilities Act (ADA) Policy Statement:

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, currently located in the Disability Services building at the Student Services at White Creek complex on west campus or call 979-845-1637. For additional information visit http://disability.tamu.edu.

Academic Integrity Statement:

Bringing a friend's clicker to class to do his quizzes is cheating and is a violation of the Aggie Honor Code. This will result in loss of clicker points, and disciplinary action.
Core Curriculum Management

New Core Component Proposal

Date Submitted: 10/31/17 4:02 pm

Viewing: PHYS 206-GE : Newtonian Mechanics for Students in Engineering and Science

Last edit: 10/31/17 4:02 pm
Changes proposed by: skessler

Contact(s)

<table>
<thead>
<tr>
<th>Name</th>
<th>E-mail</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sherree Kessler</td>
<td>skessler@tamu.edu</td>
<td>979-458-5948</td>
</tr>
</tbody>
</table>

Course Prefix | PHYS | Course Number | 206 |
Academic Level | UG |
Complete Course Title | Newtonian Mechanics for Students in Engineering and Science |
Abbreviated Course Title | NEWTONIAN MECHANICS ENGR & SCI |
Crosslisted With | |
Semester Credit Hour(s) | 3 |
Proposal for: | Core Curriculum Addition/Edit |
How frequently will the class be offered? | fall and spring, possibly summer |
Number of class sections per semester | 100 |
Number of students per semester | 2500 |

Historic annual enrollment for the last three years

Last year: Previous year: Year before:

Core curriculum

Foundational Component Area
Core Life/Physical Sci (KLPS)

TCCN prefix/number PHYS 2325

Foundational Component Area: Life/Physical Sci

How does the proposed course specifically address the Foundational Component Area definition above?

This course describes and quantifies, using the scientific method, the movement and behavior of physical bodies when subjected to forces.

Core Objectives:

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

Critical thinking is developed weekly in two stages. The first stage is during recitations (where the number of students is smaller) and the TA's (specially trained by us) guide students to have their own discovery experience, without ever directly providing the answers. The second stage is done during lectures in which the lecturer uses the concepts, and any other information delivered to students via web videos, to solve more complex problems by analyzing them and reducing them to smaller sub-problems.
Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Communication skills are addressed directly during the recitations where the students work on teams to find the solution to given sets of problems. This type of recitation engages the active communication of all members of the team, and clearly enhances effective oral communication among members. The recitations require a written report from each member to practice and enhance written communication skills.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

The Quantitative skills are addressed in both the lectures and recitations as well in the online homework. Lectures and recitations teach and guide students to properly use tools such as math to obtain quantitative answers to the problems at hand. These teachings are reinforced by the online homework in which a larger number of problems tests the students’ skills.

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

Teamwork is a fundamental component of the recitations where the students work on teams to find the solution to given sets of problems. The instructor is trained in stimulating the discussion among team members so that they work together to reach their own solutions. In addition to enhance effective communication this type of recitation engages and encourages the active participation of all members of the team and the development of team-effort behavior.

Please ensure that the attached course syllabus sufficiently and specifically details the appropriate core objectives.

Attach Course Syllabus PHYS 206 Syllabus - Fall 2017.pdf
Reviewer Comments
Course Information:
Course Title: Newtonian Mechanics for Engineering and Science
Course Number: PHYS 206 (THECB common course number: PHYS 2325)
Credit Hours: 3 SCH (3 lecture plus 1 recitation)
Term and Section: XX
Meeting times and location: XX
Pre-requisites: Grade of C or better for MATH 151 or MATH 171 or equivalent.

Instructor Information:
Instructor: XX
Telephone: XX
Email: XX
Office: XX
Office hours: XX

Course Description:
A calculus-based course on introductory Newtonian mechanics. This is the first semester of a two-semester sequence in introductory physics primarily intended for students pursuing degrees in STEM fields. By the end of the course students will understand, describe and apply the laws of physical motion to the solution of science and engineering problems.

Required Materials:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework (Mastering)</td>
<td>All 206 sections use the ModifiedMastering on-line homework system.</td>
</tr>
<tr>
<td>Clicker</td>
<td>Get the iClicker2 from your bookstore. The iClickers will be used for in-class conceptual testing and polling. To encourage class participation, credit for iClickers will be based in part on participation, as well as additional points based on correct answers.</td>
</tr>
<tr>
<td>Pre-Lectures (FlipItPhysics)</td>
<td>All 206 sections use the http://www.flipitphysics.com on-line pre-lecture system (formerly known as SmartPhysics). You are required to view the prelectures (narrated slides including a few online questions) ahead of the lectures, and the lectures will include quizzes to see if you have gained a basic understanding. The remainder of the lecture will then focus more on problem-solving.</td>
</tr>
</tbody>
</table>

Grading Policies:
Exams: there will be 4 common evening exams (3 “midterm” exams and 1 “comprehensive” exam). Each of these will be given in the evenings as listed in the course schedule during the registration procedure: date1, date2, date3, date4. The midterm exams start at or around 7:30 PM, and are expected to last 1.5 hours. The comprehensive exam will last 2 hours. Exams generally consist of problems similar in content and difficulty to the recitations or homework, and they are expected to include both multiple-choice and free response questions. Students only need to bring
their TAMU ID, a pen/pencil and hand-held calculator. Any contestations regarding the grading of an exam must be brought to the instructor’s attention within 1 week of them being returned to the student.

Absences: If you miss an exam due to an authorized excused absence as outlined in the University Regulations, Student Rule 7: http://student-rules.tamu.edu/rule07. Rule 7.1.6.2a is not acceptable. You should attempt to contact the instructor prior to the exam but no later than the end of the week of the missed exam to arrange for a way to make up the score. Instead of taking a make-up exam, the final cumulative exam grade will be based on a set of tested objectives in the other exams.

Note: Few conditions qualify as an authorized excused absence, so you must avoid missing exams except for extremely serious circumstances.

Course Grade: The final letter grade on the course is based upon the final numerical course score as detailed in the table below. The column on the left shows the minimum scores necessary to achieve the final letter grade show in the right column.

<table>
<thead>
<tr>
<th>Course Score</th>
<th>Final Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 90 %</td>
<td>A</td>
</tr>
<tr>
<td>≥ 80 %</td>
<td>B</td>
</tr>
<tr>
<td>≥ 65 %</td>
<td>C</td>
</tr>
<tr>
<td>≥ 50 %</td>
<td>D</td>
</tr>
<tr>
<td>< 50 %</td>
<td>F</td>
</tr>
</tbody>
</table>

The numerical score is computed as a weighted average over all different components of the course with the weights as determined in the table below. With the exception of the clicker quizzes all components of the course, such as tests/labs/recitation/homework/etc, are common across all sections of PHYS 206.

<table>
<thead>
<tr>
<th>Course Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams (Three Midterms + Comprehensive one)</td>
<td>80%</td>
</tr>
<tr>
<td>Recitation</td>
<td>5%</td>
</tr>
<tr>
<td>Online homework</td>
<td>5%</td>
</tr>
<tr>
<td>Pre-lectures and Checkpoints</td>
<td>5%</td>
</tr>
<tr>
<td>In-class clicker quizzes</td>
<td>5%</td>
</tr>
<tr>
<td>Total:</td>
<td>100%</td>
</tr>
</tbody>
</table>

The “Exams” portion includes the three midterm exams as well as the comprehensive one. Exams are graded in terms of the learning objectives. This type of grading removes the multiple punishment that is associated with failing the same learning objective repeatedly across exams. The complete list of learning objectives that a student is supposed to master at the end of the semester is posted at physics206.physics.tamu.edu/los.html

Each exam tests several different learning objectives and could test many times the same learning objective. During the grading we keep track of every instance in which a learning objective is tested and whether in that particular instance the objective was marked as passed or failed. Learning objectives will also be tested multiple times across exams.
At the end of the semester we call achieved objectives as those who pass either one of the criteria below:

- were marked as passing $\geq 60\%$ of the tested times in the comprehensive exam.
- were marked as passing $\geq 60\%$ of the tested times in all exams in which they were tested, including the comprehensive one.

The number of achieved objectives at the end of the semester divided by the number of tested objectives gives the numerical grade in the “Exams” portion of the table above. As an example, if a student has achieved 60 objectives out of the total of 70 objectives tested, he/she has earned 86% of the Exams portion of the course grade.

Mode of Instruction:
This course is composed of several pedagogical elements to enhance instruction through peer-learning and visual aids as described below:

- **Prelectures:** short online pre-lectures to expose the students to professionally designed videos explaining the basic concepts for the first time and gathering student- feedback on what might not be understood from them.
- **Lectures:** flipped classroom lectures in which a brief review of the concepts is done targeting the feedback on the pre-lectures, followed by the application of the physics concept to everyday life and the solution of problems. The lectures take advantage of clicker quizzes (usually solved in group) to obtain instant feedback on the level of grasp of the different concepts.
- **Recitations:** carried in groups and led by a group of trained TA’s and teaching fellows. Teaching fellows are typically engineering students that have pass the course recently with excellent grades and provide a fundamental peer-learning component to this course.
- **Homework:** individual online homework assignments.

Students should plan for three hours of preparation per credit hour each week of the term.

Student-Instructor Interaction:
A website common to all sections of the course is the main source of general information. Grades and information specific to the sections will be held in eCampus. The lecture instructor, the TAs and Teaching Fellows will host office hours and Q&A sessions.

Americans with Disabilities Act (ADA)
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, currently located in the Disability Services building at the Student Services at White Creek complex on west campus or call 979-845-1637. For additional information, visit http://disability.tamu.edu.

Aggie Honor Code
“An Aggie does not lie, cheat or steal, or tolerate those who do.” For additional information, please visit http://aggiehonor.tamu.edu.
Course Topics and Calendar of Activities:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction and math review</td>
</tr>
<tr>
<td>2</td>
<td>Units, measurements and vectors</td>
</tr>
<tr>
<td>3</td>
<td>Motion along a straight line</td>
</tr>
<tr>
<td>4</td>
<td>Motion in 2 and 3 dimensions. Exam 1.</td>
</tr>
<tr>
<td>5</td>
<td>Newton's laws of motion</td>
</tr>
<tr>
<td>6</td>
<td>Applying Newton's laws</td>
</tr>
<tr>
<td>7</td>
<td>Work and kinetic energy</td>
</tr>
<tr>
<td>8</td>
<td>Potential energy and energy conservation. Exam 2.</td>
</tr>
<tr>
<td>9</td>
<td>Centre of mass, momentum and collisions</td>
</tr>
<tr>
<td>10</td>
<td>Rotation of rigid bodies, moments of inertia</td>
</tr>
<tr>
<td>11</td>
<td>Torque and rotational dynamics</td>
</tr>
<tr>
<td>12</td>
<td>Conservation of angular momentum, static equilibrium. Exam 3.</td>
</tr>
<tr>
<td>13</td>
<td>Gravitation, satellite motion and Kepler's laws</td>
</tr>
<tr>
<td>14</td>
<td>Simple harmonic motion, pendula. Final.</td>
</tr>
</tbody>
</table>

Learning Outcomes:
Conceptual knowledge to gain:
- Understanding of the physical laws of motion, static and dynamical Newtonian mechanics, and harmonic motion.
- To think more critically/scientifically, and develop the skills need to solve difficult multi-step problems.

Upon successful completion of this course, students will be able to:
- Be able to produce a mathematical description of movement in 1, 2, and 3 dimensions.
- Transform positions, velocities, and accelerations from one coordinate system to another system in relative motion with respect to the first one.
- Identify a basic set of forces, their origin, and their points of application in specific problems.
- Identify and isolate bodies and pictorially represent the direction and location of forces acting on the bodies.
- Compute the position of the center of mass and moment of inertia for different basic shapes in simple conditions.
- Application of the Laws of Newton to quantitative predict linear and rotational movement.
- Application of conservation laws to quantitative describe linear and rotational movement.
- Computation of forces in problems of statics.
- Identification of systems undergoing Simple Harmonic Motion, description of that movement and computation of their frequencies of oscillation.
Core Curriculum Management

New Core Component Proposal

Date Submitted: 10/31/17 4:03 pm

Viewing: PHYS 207-GE : Electricity and Magnetism for Students in Engineering and Science

Last edit: 10/31/17 4:03 pm
Changes proposed by: skessler

Contact(s)

<table>
<thead>
<tr>
<th>Name</th>
<th>E-mail</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sherree Kessler</td>
<td>skessler@tamu.edu</td>
<td>979-458-5948</td>
</tr>
</tbody>
</table>

Course Prefix: PHYS
Academic Level: UG
Complete Course Title: Electricity and Magnetism for Students in Engineering and Science
Abbreviated Course Title: ELEC & MAGNETISM ENGR & SCI
Crosslisted With:
Semester Credit: 3
Proposal for: Core Curriculum Addition/Edit

How frequently will the class be offered?
fall and spring, possibly summer

Number of class sections per semester: 100
Number of students per semester: 2500

Historic annual enrollment for the last three years

Core curriculum

Foundational Component Area: Core Life/Physical Sci (KLPS)

TCCN prefix/number: PHYS 2326

Foundational Component Area: Life/Physical Sci

How does the proposed course specifically address the Foundational Component Area definition above?
This course describes and quantifies the study of the electrical and magnetic forces using the scientific method.

Core Objectives:

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):
Critical thinking is developed on weekly in two stages. The first stage is during recitations (where the number of students is smaller) and the TA's (specially trained by us) guide students to have their own discovery experience, without ever directly providing the answers. The second stage is done during lectures in which the lecturer uses the concepts, and any other information delivered to students via web videos, to solve more complex problems by analyzing them and reducing them to smaller sub-problems.
Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Communication skills are addressed directly during the recitations where the students work on teams to find the solution to given sets of problems. These type of recitation engages the active communication of all members of the team, and clearly enhances effective oral communication among members. The recitations require a written report from each member to practice and enhance written communication skills.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

The Quantitative skills are addressed in both the lectures and recitations as well in the online homework. Lectures and recitations teach and guide students to properly use tools such as math to obtain quantitative answers to the problems at hand. These teachings are reinforced by the online homework in which a larger number of problems tests the students’ skills.

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

Teamwork is a fundamental component of the recitations where the students work on teams to find the solution to given sets of problems. The instructor is trained in stimulating the discussion among team members so that they work together to reach their own solutions. In addition to enhance effective communication this type of recitation engages and encourages the active participation of all members of the team and the development of team-effort behavior.

Please ensure that the attached course syllabus sufficiently and specifically details the appropriate core objectives.

Attach Course Syllabus PHYS 207 Syllabus - Fall 2017.pdf
Reviewer Comments
Course Information:
Course Title: Electricity and Magnetism for Engineering and Science
Course Number: PHYS 207 (THECB common course number: PHYS 2326)
Credit Hours: 3 SCH (3 lecture plus 1 recitation)
Term and Section: XX
Meeting times and location: XX
Pre-requisites: Grade of C or better for PHYS 206; and MATH 152 or MATH 172 or equivalent.

Instructor Information:
Instructor: XX
Telephone: XX
Email: XX
Office: XX
Office hours: XX

Course Description:
A calculus-based course on electricity and magnetism. This is the second semester of a two-semester sequence in introductory physics for students pursuing degrees in STEM fields. By the end of the course students will have developed a basic understanding of electromagnetic phenomena, learned the basic laws of electricity and magnetism, and developed the ability to solve science and engineering problems that involve charges, electromagnetic fields and electrical circuits.

Required Materials:

Homework (Mastering) All 207 sections use the ModifiedMastering on-line homework system.

Clicker Get the iClicker2 from your bookstore. The iClickers will be used for in-class conceptual testing and polling. To encourage class participation, credit for iClickers will be based in part on participation, as well as additional points based on correct answers.

Pre-Lectures (FlipItPhysics) All 207 sections use the http://www.flipitphysics.com on-line pre-lecture system (formerly known as SmartPhysics). You are required to view the prelectures (narrated slides including a few online questions) ahead of the lectures, and the lectures will include quizzes to see if you have gained a basic understanding. The remainder of the lecture will then focus more on problem-solving.

Grading Policies:
Exams: There will be 4 common evening exams (3 “midterm” exams and 1 “comprehensive” exam). Each of these will be given in the evenings as listed in the course schedule during the registration procedure. The midterm exams start at or around 7:30 PM, and are expected to last 1.5
hours. The comprehensive exam will last 2 hours. Exams generally consist of problems similar in content and difficulty to the recitations or homework, and they are expected to include both multiple-choice and free response questions. Students only need to bring their TAMU ID, a pen/pencil and hand-held calculator. Any contestations regarding the grading of an exam must be brought to the instructor’s attention within 1 week of them being returned to the student.

Absences: If you miss an exam due to an authorized excused absence as outlined in the University Regulations, Student Rule 7: http://student-rules.tamu.edu/rule07. Rule 7.1.6.2a is not acceptable. You should attempt to contact the instructor prior to the exam but no later than the end of the week of the missed exam to arrange for a way to make up the score. Instead of taking a make-up exam, the final cumulative exam grade will be based on a set of tested objectives in the other exams.

Note: Few conditions qualify as an authorized excused absence, so you must avoid missing exams except for extremely serious circumstances.

Course Grade: The final letter grade on the course is based upon the final numerical course score as detailed in the table below. The column on the left shows the minimum scores necessary to achieve the final letter grade show in the right column.

<table>
<thead>
<tr>
<th>Course Score</th>
<th>Final Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 90 %</td>
<td>A</td>
</tr>
<tr>
<td>≥ 80 %</td>
<td>B</td>
</tr>
<tr>
<td>≥ 65 %</td>
<td>C</td>
</tr>
<tr>
<td>≥ 50 %</td>
<td>D</td>
</tr>
<tr>
<td>< 50 %</td>
<td>F</td>
</tr>
</tbody>
</table>

The numerical score is computed as a weighted average over all different components of the course with the weights as determined in the table below. With the exception of the clicker quizzes all components of the course, such as tests/labs/recitation/homework/etc, are common across all sections of PHYS 207.

<table>
<thead>
<tr>
<th>Course Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams (Three Midterms + Comprehensive one)</td>
<td>80%</td>
</tr>
<tr>
<td>Recitation</td>
<td>5%</td>
</tr>
<tr>
<td>Online homework</td>
<td>5%</td>
</tr>
<tr>
<td>Pre-lectures and Checkpoints</td>
<td>5%</td>
</tr>
<tr>
<td>In-class clicker quizzes</td>
<td>5%</td>
</tr>
<tr>
<td>Total:</td>
<td>100%</td>
</tr>
</tbody>
</table>

The “Exams” portion includes the three midterm exams as well as the comprehensive one. Exams are graded in terms of the learning objectives. This type of grading removes the multiple punishment that is associated with failing the same learning objective repeatedly across exams. The complete list of learning objectives that a student is supposed to master at the end of the semester is posted at physics207.physics.tamu.edu/los.html

Each exam tests several different learning objectives and could test many times the same learning objective. During the grading we keep track of every instance in which a learning objective is tested and whether in that particular instance the objective was marked as passed or failed. Learning objectives will also be tested multiple times across exams.
At the end of the semester we call achieved objectives as those who pass either one of the criteria below:

- were marked as passing $\geq 60\%$ of the tested times in the comprehensive exam.
- were marked as passing $\geq 60\%$ of the tested times in all exams in which they were tested, including the comprehensive one.

The number of achieved objectives at the end of the semester divided by the number of tested objectives gives the numerical grade in the “Exams” portion of the table above. As an example, if a student has achieved 60 objectives out of the total of 70 objectives tested, he/she has earned 86% of the Exams portion of the course grade.

Mode of Instruction:

This course is composed of several pedagogical elements to enhance instruction through peer-learning and visual aids as described below:

- **Prelectures:** short online pre-lectures to expose the students to professionally designed videos explaining the basic concepts for the first time and gathering student- feedback on what might not be understood from them.
- **Lectures:** flipped classroom lectures in which a brief review of the concepts is done targeting the feedback on the pre-lectures, followed by the application of the physics concept to everyday life and the solution of problems. The lectures take advantage of clicker quizzes (usually solved in group) to obtain instant feedback on the level of grasp of the different concepts.
- **Recitations:** carried in groups and led by a group of trained TA’s and teaching fellows. Teaching fellows are typically engineering students that have pass the course recently with excellent grades and provide a fundamental peer-learning component to this course.
- **Homework:** individual online homework assignments.

Students should plan for three hours of preparation per credit hour each week of the term.

Student-Instructor Interaction

A website common to all sections of the course is the main source of general information. Grades and information specific to the sections will be held in eCampus. The lecture instructor, the TAs and Teaching Fellows will host office hours and Q&A sessions.

Americans with Disabilities Act (ADA)

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, currently located in the Disability Services building at the Student Services at White Creek complex on west campus or call 979-845-1637. For additional information, visit http://disability.tamu.edu.

Aggie Honor Code

“An Aggie does not lie, cheat or steal, or tolerate those who do.” For additional information, please visit http://aggiehonor.tamu.edu.
Course Topics and Calendar of Activities:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Electric Charge and Electric Field: Electric charge, Coulomb’s law</td>
</tr>
<tr>
<td>2.</td>
<td>Electric Charge and Electric Field: Electric Field, Electric Dipoles</td>
</tr>
<tr>
<td>3.</td>
<td>Gauss’ Law: Electric flux, Gauss’s law, Applications of Gauss’s Law</td>
</tr>
<tr>
<td>5.</td>
<td>Capacitance and Dielectrics: Capacitors and Capacitance, Capacitors in Series and in Parallel, Energy storage in capacitors, Electric Field energy, Dielectrics, Gauss’s Law in Dielectrics</td>
</tr>
<tr>
<td>6.</td>
<td>Currents, Resistance, and Electromotive Force: Current, Resistivity, Resistance, EMF, Intro to circuits, energy and power in circuits</td>
</tr>
<tr>
<td>7.</td>
<td>DC Circuits: Resistors in series and in parallel, Kirchhoff’s Rules, RC-circuits, Power distribution systems Magnetic Fields and Magnetic Forces: Magnetic Field, Magnetic Field lines and magnetic flux, Motion of Charged Particles in a Magnetic Field and Applications, Current-carrying conductor in a magnetic field, Forces and torques on a current loop in a magnetic field, motors, Hall effect. Exam 2.</td>
</tr>
<tr>
<td>8.</td>
<td>Sources of Magnetic Field: M-field of moving charge, M-field of current element, M-field of a straight current-carrying conductor, forces between parallel conductors, M-field of a circular current loop, Ampere’s law and applications</td>
</tr>
<tr>
<td>10.</td>
<td>Inductance: Mutual Inductance, self-inductance and inductors, magnetic field energy, RL circuit, LC circuit, LRC circuit</td>
</tr>
<tr>
<td>11.</td>
<td>Alternating Current: Phasors and AC, Reactance, LRC circuit with AC source and impedance, power in AC circuits, resonance in AC, transformers. Exam 3.</td>
</tr>
<tr>
<td>13.</td>
<td>Special topics: standing EM waves, EM waves modulation in telecom., propagation of light, refraction, reflection, Snell’s law, Review. Final.</td>
</tr>
</tbody>
</table>

Detailed Learning Outcomes:

Mathematical Tools to Solve E&M Problems

- Be able to compute the components of a vector in any given coordinate system
- Be able to compute addition, scalar, and vector products between vectors
- Be able to solve for an unknown quantity in a single equation when possible
- Be able to solve a system of N equations with N unknown variables
- Be able to translate verbal constraints into mathematical language
- Be able to translate mathematical results to verbal interpretations
- Be able to do integrals and take derivatives
Electric Charge and Coulomb’s Law

- Calculate the electric force between charges using Coulomb’s Law
- Calculate the Coulomb force exerted on a charged particle by other charged particles, using Coulomb’s Law and Superposition
- Calculate the electric field produced by a point charge
- Calculate the electric field due to a collection of point charges and understand the distinction between electric force and electric field
- Calculate the electric field caused by a continuous distribution of charge
- Be able to interpret electric field lines
- Calculate the force and torque on an electric dipole due to an external electric field, and the potential energy of an electric dipole
- Gauss’ Law
- Articulate the concept of electric flux and be able to calculate the electric flux through a surface
- Formulate how Gauss’ Law relates the electric flux through a closed surface to the charge enclosed by the surface
- Articulate under what conditions Gauss’ Law is useful for determining electric field
- Be able to use Gauss’ Law to calculate the electric field due to a symmetric charge distribution
- Describe the electric field within a conductor and where the charge is located on a charged conductor.

Electric Potential

- Calculate the electric potential energy of a collection of charges
- Use conservation of energy to solve a problem with electric forces
- Articulate the meaning and significance of electric potential
- Calculate the electric potential that a collection of charges produces at a point in space
- Calculate the electric potential due to a continuous distribution of charges
- Be able to use electric potential to calculate electric field
- Be able to calculate the electric potential from the electric field
- Capacitance and Dielectrics
- Identify the nature of capacitors and be able to quantify their ability to store charge (i.e. the capacitance)
- Be able to combine the calculation of fields and potential functions to derive the capacitance of the three soluble systems
- Analyze capacitors connected in a network (by determining equivalent capacitance for capacitors connected in series or parallel)
- Calculate the amount of energy stored in a capacitor
- Articulate how dielectrics make capacitors more effective (and how a dielectric within a charged capacitor becomes polarized)
- Be able to apply Gauss’ Law when dielectrics are present

Current, Resistance, and Electromotive Force

- Calculate the resistance of a conductor from its dimensions and resistivity
- Articulate Ohm’s Law both in terms of the resistivity of a material (the microscopic form of Ohm’s Law) and in terms of the resistance (macroscopic form of Ohm’s Law)
• Articulate the concept of electromotive force (emf) and how emf makes it possible for current to flow in a circuit
• Identify the symbols used in circuit diagrams
• Calculate energy and power in a circuit

Direct-Current Circuits
• Analyze circuits with multiple resistors in series or parallel
• Articulate Kirchhoff’s Rules
• Apply Kirchhoff’s rules to analyze circuits
• Articulate the functionality of ammeters and voltmeters and under what conditions these instruments are “idealized”
• Analyze R-C Circuits

Magnetic Field and Magnetic Forces
• Articulate the force exerted by a magnetic field on other moving charges or currents
• Interpret magnetic field lines and calculate magnetic flux through a surface
• Calculate the motion of charged particles in magnetic and electric fields
• Calculate the magnetic force on a current-carrying wire
• Calculate the torque on a magnetic dipole and the potential energy of a magnetic dipole in an external magnetic field
• Sources of Magnetic Field
• Calculate the magnetic field due to a point charge with constant velocity
• Calculate the magnetic field due to a current (using Biot-Savart Law)
• Calculate the force between two long parallel conductors
• Apply Ampere’s Law to calculate the magnetic field
• Recognize under what conditions Ampere’s Law is useful to determine the magnetic field

Electromagnetic Induction
• Be able to calculate magnetic flux through a surface
• Articulate how Faraday’s Law relates the induced emf in a loop to the time-derivative of magnetic flux through the loop and be able to apply it to calculate induced emf
• Apply Lenz’s Law to determine the direction of an induced emf
• Calculate the emf induced in a conductor moving through a magnetic field
• Calculate the induced electric field generated by a changing magnetic flux
• Articulate the concept of displacement current and be able to calculate it for a changing electric flux through a surface

Inductance
• Calculate mutual inductance and induced emf due to mutual inductance
• Articulate the concept of self-inductance and be able to relate the magnetic flux and current to the self-inductance
• Calculate the energy stored in a magnetic field
• Analyze R-L circuits and describe the time-dependence of the current
• Analyze L-C circuits and describe the time-dependence of the current
• Recognize the time-dependence of the current in an L-R-C circuit

Alternating-Current Circuits
• Analyze an L-R-C series circuit with a sinusoidal emf
• Understand the origin of resonances in L-R-C circuits (analogous to forced, damped harmonic oscillator)
• Determine the amount of power flowing into or out of the alternating-current circuit

Electromagnetic Waves
• Articulate the key properties of electromagnetic waves (wave is transverse, relationship between E and B, speed of wave)
• Be able to reproduce the wave equation mathematically and articulate the meaning of all quantities in the mathematical formulation of sinusoidal electromagnetic plane wave.
• Use the Poynting vector to calculate the energy and momentum carried by the electromagnetic wave
Creative Arts
Core Curriculum Management

Date Submitted: 11/03/17 11:10 am

Viewing: KINE 311-GE 311 - Fundamental Rhythms and Dance

Last edit: 11/03/17 11:10 am
Changes proposed by: pjmiller

Contact(s)
Course Prefix: KINE
Course Number: 311
Academic Level: UG
Complete Course Title: Fundamental Rhythms and Dance
Abbreviated Course Title: FUNDA RHYTHMS & DANCE

Crosslisted With:

Semester Credit: 3 Hour(s):
Proposal for:
 - Core Curriculum Addition/Edit

How frequently will the class be offered?
 - Fall and spring

Number of class sections per semester: 1
Number of students per semester: 25

Historic annual enrollment for the last three years
 - Last year: 52
 - Previous year: 42
 - Year before: 23

Recertify for Core Curriculum? No

Core Curriculum

Foundational Component Area: Core Creative Arts (KCRA)

Foundational Component Area: Creative Arts

How does the proposed course specifically address the Foundational Component Area definition above?

This course fits into the creative arts foundational component area because of the focus on dance appreciation, analysis of performance, audience etiquette, understanding of diverse cultural forms and developing creative dance products. Students have an intimate experience with dance by participating in creating dance and dance appreciation by analyzing professional and amateur performances. Students study foundations of creative dance, rhythms, international folk dance and square dance by participating in a variety of dance activities to develop appreciation and create movement.

Core Objectives:

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

Students will interpret and synthesize the elements of dance, space, time and energy to create movement sequences. They will analyze dance performances using the framework of movement elements and aesthetic principles to evaluate dance performances. This is demonstrated through a written document which requires a rich description of two different dances displaying an analysis of the movement elements show and a connection to the aesthetics.
Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Students communicate in this class through creating movement to express ideas, theme or stories. Students demonstrate their ability to communicate in writing through an objective critique of two dance performances for the analyses assignment. Lastly students communicate through their oral presentation or report to the rest of the class demonstrating their knowledge from research they have gathered on international folk dance. This presentation will also include class discussions.

Teamwork (to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal):

Students will work in groups to create and explore the creative and rhythmic fundamentals by creating group choreography. The students work in groups for square dance module to be able to complete the steps. The square dance is performed with 4 couples. The students throughout the unit frequently change partners and groups to enable the students to learn and try many roles. Lastly students will have to create a presentation in partners for folk dance. The students will have to prepare an oral report on the historical background of their chosen folk dance.

Social Responsibility (to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities):

Within the class the students study folk dance from around the world. They research the country of origin and how specific dance styles and movements are connected to geography, culture, and region of the country. They develop a global perspective of historical context and how the development of dance in different regions of the world occurred. Additionally, students also identify how dances from around the world are used to promote the understanding of the global community. During the semester the students are required to go to two live performances and are provided guidelines for audience etiquette in a social setting.

Please ensure that the attached course syllabus sufficiently and specifically details the appropriate core objectives.

Attach Course Syllabus KINE 311 Syllabus.pdf

Reviewer Comments
Course Number and Title: Fundamental Rhythms and Dance KINE 311 Fall 2017

Instructor Information:
Name: Alexandra Pooley Email: APooley1@tamu.edu
Office Location: PEAP 238 Office Phone: 979 845 2156
Office Hours: Appointment Only

Class Information:
This is a hybrid class. The information for the lecture portion of the class can be found online at ecampus.tamu.edu. The lab portion of the class will be held in PEAP 206, MWF 11:30-12:20.

Dress: Wear activity clothes. Be ready to dance every day.

TextBook: N/A

Class Description: Appreciation of rhythms and dance movements in a cultural context; analysis of dance performance; basic understanding of the various dance components.

Purpose: The purpose of this class is to develop the requisite dance skills and appreciation in creativity, rhythms, folk, and square dance necessary to dance as an art form. This course examines the basic understanding of the various dance components. The student will develop a greater appreciation for dance because of this class.

Learning Outcomes/Core Objectives: By the end of the semester, the student should be able to demonstrate the following core objectives

Critical thinking:
- Analyze the works of dance pioneers comparing/contrasting styles, form and technique
- Discover creative choices in movement through manipulation of space, time and energy

Communication:
- To demonstrate competency in reading, writing, and speaking about dance with clarity.

Teamwork:
- Create work to obtain the shared purpose and reward of creative collaboration.

Social Responsibility:
- Reveal intercultural significance by participation in traditional/ritualistic global dance styles.
Course Assessments

Folk and Square Group Project and Report 40%
You will complete one of the assignment options below:
(A) Folk: Learn 3-4 different folk and cultural dances. Present/report for 10 minutes to the class about their findings from research on a particular folk dance. Presentations can be movement or lecture based and should include movement examples (video/live) and historical context.
(B) Square: Learn a variety of square dance steps. Students will create a square dance in groups and provide an oral report presented by each group member about the basic steps, background, rehearsal process and the group work experience.

Analysis charts 5%
An important part of learning dance is performance or sharing. It is important that you develop analysis skills that will enable you to appreciate your own work and the work of others. In eCampus there is an analysis chart to facilitate your observation. By the end of the semester you will turn in two completed charts (typed and uploaded in eCampus).

Sequence Evaluations 10%
Creative dance choreography – Create a creative dance sequence in up to groups of 4. Create a written report on the choreographic devices used in this dance and comparisons between this sequence and professional works explored in class.
Rhythmic dance choreography – Create a rhythmic dance sequence in groups of 2-6. Evaluated class discussion on the use of music in professional dance choreography and dance sequence.

Written Quizzes/Tests (3) 45%
The three exams are independent of one another and comprise the major portion of the grade in the course. Information from the ebook (in eCampus), lectures, and the web will be included on the exams.

Late submissions will not be accepted unless supported with documentation.

Grading Scale
90-100 = A
80-89 = B
70-79 = C
60-69 = D
Below 60 = F
Attendance: Attendance is a critical component of all KINESIOLOGY classes and is essential to learning a skill. Additionally due to the skill progressions found in teaching activities, it is crucial, for safety reasons, to require regular attendance.

A student shall be allowed 1 unexcused absence without penalty.

Unexcused absence after 1 absence: Deduct 2 points for each absence from student’s final grade.

*Excused absence: University authorized
 Death or major illness in immediate family
 Participation in legal proceedings
 Religious holy day
 Confinement because of illness (requires Health Center or physician’s note)

*Documentation required on first class day upon returning to class.

The reasons absences are considered excused by the university are listed below. See Student Rule 7 for details (http://student-rules.tamu.edu/rule07).

Other absences may be excused at the discretion of the instructor with prior notification and proper documentation. In cases where prior notification is not feasible (e.g., accident or emergency) the student must provide notification by the end of the second working day after the absence, including an explanation of why notice could not be sent prior to the class.

Make-up Policy:
If an absence is excused, the instructor will either provide the student an opportunity to make up any quiz, exam or other work that contributes to the final grade or provide a satisfactory alternative within 2 class days of return to class or by a date agreed upon by the student and instructor. The make-up work must be completed within 2 class days of return to class or in a timeframe designated by the instructor relative to the assignment/exam missed.

Academic Integrity
“An Aggie does not lie, cheat, or steal, or tolerate those who do.”

Upon accepting admission to Texas A&M University, individuals immediately assume a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System. Ignorance of the rules does not exclude any member of the Texas A&M University community from the requirements or the processes of the Honor system. Please think about what this honor code means, and let it shape and guide your behavior. For additional information please visit: http://www.tamu.edu/aggiehonor/

Student Rules:
Each student has the responsibility to be fully acquainted with and to comply with the Texas A&M University Student Rules. More specific rules, information and procedures may be found in various publications pertaining to each particular service or department. For more information about the rules, please visit, http://student-rules.tamu.edu/.

PLEASE NOTE:
The handouts used in this course are copyrighted. By “handouts”, I mean all materials generated for this class, which include, but are not limited to syllabi, quizzes, exams, lab problems, in-class materials, review sheets, and additional problem sets. Because these materials are copyrighted, you do not have the right to copy the handouts, unless I expressly grant permission.

As commonly defined, plagiarism consists of passing off as one’s own, the ideas, words, writings, etc., which belong to another. In accordance with this definition, you are committing plagiarism if you copy the work of another person and turn it in as your own, even if you should have the permission of that person. Plagiarism is one of the worst academic crimes, for the plagiarist destroys the trust among colleagues without which research cannot be safely communicate.

It is also considered Academic Dishonesty to provide falsified documentation in order to obtain an excused absence.

If you have any questions regarding plagiarism, please consult the latest issue of the Texas A&M University Student Rules, under the section “Scholastic Dishonesty”.

Americans with Disabilities Act (ADA)

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services at 845-1637. For additional information visit http://disability.tamu.edu

ATTENTION STUDENTS:

1. It is the responsibility of the student to inform his/her instructor if they have a condition that may impair or influence participation in an activity class (e.g. physical handicap, use of medication, etc.).
2. Should you become unable to participate in or complete the skill evaluation in this activity class, alternative methods of evaluation may be provided at the instructor’s discretion.
3. The courses in which you have elected to participate are either required as part of your major or elected. Regardless of the case, you must realize that there is a certain assumption of risk, which you engender when you participate in activity classes such as these. You must be aware of the assumption.

Updated 10/17
Tentative Schedule, Subject to Change
Friday lab time will be used for practicing.

<table>
<thead>
<tr>
<th>Date week beginning</th>
<th>Monday</th>
<th>Wednesday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 Aug 28, 30</td>
<td>Syllabus day</td>
<td>Creative Dance: Explore: Motif & Space</td>
<td>Create a Visual representation of dance devices</td>
</tr>
<tr>
<td>Week 2 Sept 4, 6</td>
<td>Explore: Direction Force & Time Beg/Middle/End Visual dance</td>
<td>Locomotive Movements Non Locomotive Movements Props</td>
<td>Professional Creative dance works</td>
</tr>
<tr>
<td>Week 3 Sept 11, 13</td>
<td>Choreography sequence</td>
<td>Choreography Report</td>
<td>Choreography Report</td>
</tr>
<tr>
<td>Week 4 Sept 18, 20</td>
<td>Rhythmic Dance Learning Music terms</td>
<td>How to find Macro & Micro Beat</td>
<td>Cultural dancers that uses props to create beats</td>
</tr>
<tr>
<td>Week 5 Sept 25, 27</td>
<td>Beat Coordination</td>
<td>Exploring movement using counts and beats</td>
<td>Musical Forms and structure</td>
</tr>
<tr>
<td>Week 6 Oct 2, 4</td>
<td>Rhythm Workday</td>
<td>Rhythmic Dance Report</td>
<td>Written Test 1.</td>
</tr>
<tr>
<td>Week 7 Oct 9, 11</td>
<td>Introduction to Folk</td>
<td>Folk dances</td>
<td>Folk Steps</td>
</tr>
<tr>
<td>Week 8 Oct 16, 18</td>
<td>Folk project work day</td>
<td>Folk Assignment</td>
<td>Folk Assignment</td>
</tr>
<tr>
<td>Week 9 Oct 23, 25</td>
<td>FolkAssignment</td>
<td>FolkAssignment</td>
<td>Written Exam 2 - Folk</td>
</tr>
<tr>
<td>Week 10 Oct 30, Nov 1</td>
<td>Contra Dance</td>
<td>Square Steps</td>
<td>Square Steps</td>
</tr>
<tr>
<td>Week 11 Nov 6, 8</td>
<td>Square Steps</td>
<td>Square Steps</td>
<td>Square Steps</td>
</tr>
<tr>
<td>Week 12 Nov 13, 15</td>
<td>Square Steps</td>
<td>Prep for Assessment</td>
<td>Dance Analysis Assignment</td>
</tr>
<tr>
<td>Week 13 Nov 20</td>
<td>Prep for Assessment</td>
<td>NO CLASS</td>
<td>NO CLASS</td>
</tr>
<tr>
<td>Week 14 Nov 27, 29</td>
<td>Square report</td>
<td>Square report</td>
<td>Written Exam 3 - Square</td>
</tr>
<tr>
<td>Week 15 Dec 6</td>
<td>Square report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Language, Philosophy, And Culture
New Core Component Proposal

Viewing: ANTH 370-GE : Cultural Diversity and Ethics

Last edit: 11/03/17 12:40 pm
Changes proposed by: jwinking

Contact(s)
- **Course Prefix:** ANTH
- **Course Number:** 370
- **Academic Level:** UG
- **Complete Course Title:** Cultural Diversity and Ethics
- **Abbreviated Course Title:** CULTURAL DIVERSITY & ETHICS
- **Semester Credit:** 3

Proposal for:
- Core Curriculum Addition/Edit

How frequently will the class be offered?
Multiple sections per semester (including most summers).

| Number of class sections per semester | 10 |
| Number of students per semester | 300 |

Core curriculum

Foundational Component Area: Core Lang, Phil, Culture(KLPC)

Foundational Component Area: Lang, Phil, Culture

How does the proposed course specifically address the Foundational Component Area definition above?

ANTH 270, Cultural Ethics and Diversity, is a proposed new course for inclusion in the Language, Philosophy and Culture area of the TAMU Core Curriculum. This course uses real-world examples, experiences and case studies to explore contemporary ethical issues born of the diverse nature of human culture globally and their human intellectual creations and technological innovations. In this writing intensive ('W'), collaborative and reflective class, students are repeatedly challenged to create their own analyses of ethically ambiguous dilemmas while maintaining an awareness of diversity in beliefs and values that inform such decisions. We will use an anthropological mindset to develop the communication and critical-thinking skills needed to effectively examine the human experience holistically; ultimately creating a Final Project which synthesizes and reflects upon the materials learned in class together with information gleaned from one-on-one interviews and conversations with industry representatives.

This course may challenge a student's assumptions of what is 'normal'; through the course material, students should learn to appreciate the diversity of the human condition, learning that “their way” of doing, interacting, and thinking is neither the only way nor sometimes the best way. This course would be especially beneficial to any person intending to work or live in any culturally diverse or international environment, because this course encourages a student’s reflection upon their own culture and ethics in relation to regional, national and global contexts. Students should leave this course with a cultural awareness that will inform future evaluations of domestic and global issues.

Core Objectives:

https://nextcatalog.tamu.edu/courseleaf/approve/?role=CCC%20Preparer
Critical Thinking: Developing critical thinking is one of this course's main objectives. This class is organized in modules; each module purposefully introduces concepts that add to a student's ability to think critically about their own worldview, their own projects and areas of interest, as well as current global events.

Initial modules will start with exploring some fundamental anthropological and philosophical concepts such as: professionalism, ethics, holism, race, ethnicity, diversity, inclusion, ethnocentrism, epistemology, critical cultural relativism, axiology and ethos. During this time, students will also hone their data collection skills by practicing participant observation and interviewing. In each of these initial modules, students will reflect on how these data and concepts impact their own worldview, personal ethical stance, values and the Code of Ethics of their chosen company, discipline or industry.

After introducing these fundamental concepts together with rudimentary data collection skills, students will engage in Problem Based Learning through the application of Fractious Problem Solving to various ethical dilemmas: e.g. self-driving vehicles, patent laws, professionalism and corporate ethical responsibility. During the second half of the semester, students will purposefully explore varying perspectives, possibilities and ethical principals using various problems for basis of exploration e.g. human rights, drug and chemical development and distribution, space travel and human cloning. Thus students must learn to collect, analyze, evaluate and synthesize new information, facts and perspectives, acknowledge their own assumptions, as well as to critically evaluate principals and decisions based on that information. The final modules of the class are purposefully aimed at challenging student’s assumptions of ‘right’, ‘good’ and ‘normal’. We will specifically focus on those assumptions that may impact their working careers: for example, fallacious thinking, exploring different cultural norms that effect proxemics and perceptions of sexuality, religion, bribery, nepotism, gift giving, risk and equality. This exposure to different cultural behaviors and norms will not only prepare students for international and culturally diverse assignments, but will aid to the student’s critical thinking by exposing them to potentially different perspectives.

Students’ critical-thinking skills will be assessed in three ways.

First, students will complete Reflections Journals (RJs) and respond to other student’s RJs. A grading rubric will be used for RJs and responses. The overarching remit of the RJ’s is to provide evidence that the student has comprehended, evaluated and analyzed the material (using meta-reflection and critical thinking skills) while perhaps challenging their own cultural perspectives. Instructions for the RJs encourage the student to critically synthesize the course material into a bigger picture, global perspective or current problem.

Second, students will create a Final project (FP) for the class. The FP involves contacting and interviewing an industry representative and about how ethics and diversity impact their workplace and daily life. Using guiding questions and prompts, students will also engage in written and verbal critical peer review sessions in effort to hone their thoughts and refine their FP. In the small class meetings students will be expected to present their QT and FP findings to the group. The FP must include synthesis of ideas and application of concepts to problems.

Third, over the course of the semester 10 Quick Tasks (QT) will require students to come to class prepared so they can actively engage in the class, and be prepared to creatively and innovatively evaluate and synthesize that day’s topic in a directed discussion.

Communication: (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

Communication: In this course, students are will be exposed to, and expected to participate in, many forms of communication: written, oral, visual, and also non-verbal.

The QT, RJ and FP projects require students to compose, respond, review and revise written submissions that critically synthesize and analyze information presented in class with the world around them. The FP this class involves contacting and interviewing an industry representative. Using guiding questions and prompts, students will also engage in written and verbal critical peer review sessions in effort to hone their thoughts and refine their FP. In the small class meetings students will be expected to present their QT and FP findings to the group.

In the large class meetings, we will aim to create an interactive environment where students are encouraged to ask questions, answer questions, and comment on topics being presented in class. This will be accomplished in a variety of ways using in class activities such as “Think, Pair, Share” exercises, index card submissions (e.g. muddiest points or paraphrasing a concept), collaborative list making in class, small group break-out sessions and other instructor prompted strategies to encourage active participation. Additionally in the large class meetings student will use polling technology to give them a voice (without actually speaking) in the classroom. Visual communication skills are developed in this course through class meetings and online modules. Throughout the course, students will encounter and/or generate videos, pictures, charts, and maps expressing or summarizing observations and evidence. For example in small break out groups students may be asked to bring and discuss an image of relevance to the current topic, or create a mind-map brainstorming a concept. The visual communication element is vitally important because many people are visual learners or require visuals to explain concepts (the author included).

Lastly as a discipline, anthropology is a very much visually or non-verbally oriented discipline. As part of one of the modules and the FP, students will practice interviewing and observing humans, interpreting their actions and non-verbal communications, and synthesizing these data within their worldview or projects.

Social Responsibility: (to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities):

Social responsibility is an important part of being an anthropologist. Anthropologists have an ethical responsibility of championing cross-cultural knowledge and intercultural competency, spreading knowledge of civic responsibility, and engaging effectively in regional, national, and global communities. Our goals are to educate people about the rich diversity of humanity, why difference is not something to fear but something to embrace, and the benefits of living and working in a highly diverse community. Through the course materials and assignments students of ANTH 270 are instilled with these values and expected to come away from this course with a sense of and appreciation for social responsibility. Below are several ways in which students learn about these values and are evaluated on their sense of social responsibility.

1) Course content repeatedly demonstrates diversity through exposure to various modern cultural norms, beliefs, ethoses and axiologies: thereby instilling a sense of intercultural competency and sensitivity to other ways of thinking, including and being.

2) Course material highlights the value of the diversity seen in today’s world and how this could potentially impact their future projects and problem solving. For STEM majors this knowledge could potentially change the perceived boundary, framework or parameters of a project. This will provide students a means of becoming effective, educated members of a global community. This is especially important since the world in which we live is becoming increasingly ‘smaller’ yet more diverse.

3) Because of the collaborative and interactive nature of this class, students have a social responsibility to each other to submit quality work on time, and provide critical and helpful responses to each other.

4) Student performance on assessments is used as a proxy to gauge their ability to appreciate and synthesize different ways of thinking, believing and doing, and emerging ability to function in a multi-cultural world.

https://nextcatalog.tamu.edu/courseleaf/approve/?role=CCC%20Preparer
Personal Responsibility (to include the ability to connect choices, actions and consequences to ethical decision-making):

Personal Responsibility: The assignments and exercises in this course, specifically the RJs and interactive class activities, require students to consider their own ethical stance and how this stance relates to the big picture. Several of the modules and in-class activities require students to engage in meta-reflexivity; why do they think the way that they do? How does this thinking impact your ability to make decisions and think critically about a problem or encounter? Students will come away from this class with a greater understanding of themselves, and their personal responsibility and position in society.

Because of the collaborative and interactive nature of this class, especially the peer review and feedback on both RJs and FPs, students should have great personal responsibility to submit quality assignments and the associated feedback on time.

Furthermore the FP will encourage students to apply various perspectives (some that may differ from their own) and ethically use sources to craft a persuasive argument/answer to a problem. Student learning of personal responsibility and ethical decision-making is accomplished through evaluation of content of this project.

Please ensure that the attached course syllabus sufficiently and specifically details the appropriate core objectives.

Attach Course Syllabus ANTH270_Syllabus_V8-1.pdf

Reviewer Comments Steve Oberhelman (s-oberhelman) (11/03/17 1:26 pm): A course change to move this course to ANTH 270 designation has been submitted.
ANTH270: Cultural Diversity & Ethics
Semester 'Yr Section 9xx-9xx

In this syllabus
About this Course ... 1
Student Learning Outcomes 1
About your Professor 2
Why Anthropology? ... 2
Class meeting information 2
Course Structure ... 2
Core Curriculum Learning Objectives 3
Course Assessment ... 4
Quick Tasks (QT) ... 4
Critical Reflection Journals and Responses (RJ/RJR) 4
Final Project (FP) ... 4
Participation .. 4
Grade Calculation .. 4
Modules and Class Technology 5
Course Policies .. 5
Plagiarism and Cheating 5
Americans with Disabilities Act (ADA) 5
..Some final advice 6
Class Schedule .. 7

Catalog Description:
Examination of the cultural construction of ethical values and how cultural diversity, including beliefs, values and ways of doing business, impacts human technological innovation. Focuses on developing a holistic, social-science mindset and application of critical thinking skills.

About this Course
This course uses real-world examples, experiences and case studies to explore contemporary ethical issues born of the diverse nature of human culture globally and our intellectual creations and technological innovations. In this writing intensive (‘W’), collaborative and reflective class, we will use an anthropological mindset to develop the communication and critical-thinking skills needed to effectively examine the human condition. This course may challenge your assumptions of ‘normal’. This course would be especially beneficial to any person intending to work or live in any culturally diverse or international environment, because this course encourages reflection upon one’s personal and professional responsibility, values, culture and ethics in relation to regional, national and global contexts.

Student Learning Outcomes
On the successful completion of this course the student will:

✓ Develop and improve written and verbal communication, and critical thinking skills.

✓ Critically appraise how diversity of ideas, technology, innovations, values, beliefs and other aspects of culture shape the decisions we make and affect the human experience.

✓ Investigate, compare and debate how using a holistic mindset and incorporating different experiences, cultures or ethical perspectives may change a perceived problem, process or project.

✓ Identify, explain and discuss the concepts of professionalism, social responsibility, personal responsibility, ethnocentrism, critical cultural relativism, worldview, ethos (spirit of the culture), axiology (what is valued) and epistemology (how we know what we know).

✓ Hypothesize and explore how these concepts (listed above) apply to your chosen discipline or subject of interest.

✓ Be better prepared to effectively work in diverse, international or multicultural teams and environments.

“Education is not the learning of facts, but training the mind to think.”

- ALBERT EINSTEIN
About your Professor
Dr. Catharina Laporte
Cultural Anthropologist
☎: ANTH 227
Office Hours: Tues & Thurs, 12:30 - 2pm or by appointment.
✉: (979) 845 5242
✉: claporte@tamu.edu

Why Anthropology?
Anthropology, and its sub-discipline Archeology, is the holistic study of humanity both past and present. Anthropology is a very diverse subject and discipline—it is the perfect choice for anyone who loves to have their fingers in lots of pies!

That is because anthropology is a meta-discipline; it integrates knowledge generated from lots of different disciplines such as philosophy, history, economics, business, psychology, sociology, political science, gender and minority studies, as well as traditional hard sciences like geography, computer science, biology, chemistry, and physics.

At Texas A&M University, in addition to having an Anthropology Department, anthropologists are faculty in numerous other departments including Recreation, Parks and Tourism, Architecture, Health Sciences, and International Studies. For all majors, the meta-discipline of anthropology provides an ideal window to the wonderfully diverse nature of humanity.

See anthropology.tamu.edu for more information.

Course Structure
This course meets two times a week. The first meeting of the week is a ‘large’ class of no more than 100 students. The second meeting of the week, led by a teaching assistant, is a smaller group of no more than 25 students.

The class is divided into Learning Modules that are available in eCampus. You are expected to have completed the Learning modules prior to class noted on the schedule (last page of this syllabus).

The course, and its modules, is structured in a way that acknowledges that students have different learning styles. Each module will have some time devoted different modes of learning: watching, listening and doing. Additionally, the course is structured to allow for more active learning and interaction with the instructor, the community and other students. For example, you will be actively researching materials that contribute to class discussions, and we will sometimes have guest speakers in class.
Core Curriculum Learning Objectives

Critical Thinking (creating thinking, innovation, inquiry, analysis, etc.)

- The formative learning modules in this class combined with a problem-solving flow-chart integrated throughout the course, purposefully introduce concepts that add to a student’s ability to think critically about their own worldview, their own projects and areas of interest, as well as current global events.
- Assignments require students to independently research and holistically evaluate the ethical consistency and cultural foundations of different viewpoints and perspectives, analyze and interpret data, and justify interpretations.
- Students are encouraged to explore their assumptions and biases during in-class and online discussions, and large and small-group activities.

Communication (effective development, interpretation, & expression through written, oral, and visual communication)

- Students will develop written communication skills through formative weekly quick tasks, reflection papers and responses, and a cumulative final written project.
- Visual communication skills will be developed via assignments that require students to visually represent data, as well as through in-class discussions of data representations relevant to course topics.

- Anthropology is visually or non-verbally oriented discipline; students will practice interviewing and observing humans, interpreting their actions and non-verbal communications, and synthesizing these data within their worldview or projects.
- Students will develop oral communication skills via discussions with their peers, the course facilitators, guest speakers and industry representatives. These will include discussions of potentially charged topics in diverse settings.

Social Responsibility (intercultural competence, knowledge of civic responsibility, etc.)

- Students will develop social responsibility through their exploration of numerous cultures. To achieve this, students will engage in role-playing, watch documentaries, read ethnographies and newsworthy articles, listen to podcasts and interact with guest speakers and industry representatives, and discuss and debate Western and non-Western ethical problems and solutions.
- Students will be required to explore different cultural viewpoints in their assignments and consider the balance between differing ethical approaches.

Personal Responsibility (ability to connect choices, actions, and consequences to ethical decision-making)

- Students will develop personal responsibility through their exploration of the cultural construction of morality and the evaluation of normative ethical approaches.
- Students will engage in meta-reflexivity; why do they think the way that they do? How does this thinking impact their ability to make decisions and think critically about a problem or encounter? Students will come away from this class with a greater understanding of themselves, and their personal responsibility and position in society.
- Weekly assessment requires the student to engage and plan their workday.
- Because of the collaborative and interactive nature of this class, especially the peer review and feedback on both RJs and FPs, students should have great personal responsibility to submit quality assignments and the associated feedback on time.
Course Assessment
There will be no formal exams in this class. Grades will be based on the assessments listed below.

Quick Tasks (QT)
To assess your comprehension and knowledge, and to give you the opportunity to explore the module concepts in more depth, ten quick tasks (QT) will be dispersed throughout the course. QTs will be assigned via the eCampus modules and be required to be submitted both online and in class on dates indicated on the class schedule. A grading rubric will be provided on eCampus. The two lowest QT scores will be dropped and the resulting sum will constitute 32% (8 x 4%) of your overall grade.

Critical Reflection Journals and Responses (RJ/RJR)
To promote the exchange of ideas and a critical appreciation for other people’s thoughts and concepts in a written format, you will be required to submit RJs (of approximately 450-500 words) on eCampus. Think of this as a scholarly diary entry where you are reflecting upon the course content in relation to your life and/or current events, what we have viewed and discussed in class, together with the information presented in the modules.

For each RJ assignment, you are also required to respond (RJR) to at least two other people’s RJ with your own unique thoughts or perspectives (no less than 250 words): remember to be respectful and scholarly in your submissions.

Due dates and times for RJs and RJRs are indicated on the class schedule. Everyone’s RJ#1 will be graded. After that, half will be randomly chosen to be graded, such that each student will have three RJ/RJR assignments graded by the end of the semester. A grading rubric will be provided on eCampus. These grades collectively constitute 18% (3 x 6%) of your overall grade.

Final Project (FP)
In effort to analyze, apply and synthesize the material learned in this class, provide a legitimate networking opportunity, and improve your written, verbal, and critical thinking skills, you will produce a Final Project (FP). For this assignment, you will conduct an open ended interview of a person in an industry of your choice, and report on how cultural diversity and/or ethics impacts their daily lives. This will be an ongoing course long effort honed in the small class meetings. The final product will be approximately 6 pages (approx. 1500 words), although you can select the format and audience yourself (short file, governmental report, story for a popular press magazine, etc.). Your FP will be outlined, drafted, practiced, reviewed, reworked and informally presented in our small class meetings. Your FP will be assessed in stages with due dates detailed in the Class Schedule on final page of this syllabus: Written Proposal (4%); Status checkpoint (2%); evidence of interview (2%); First (best) draft (12%); and Final submission (20%). A grading rubric and more specific instructions will be provided in class. Your FP will constitute 40% of your overall grade.

Participation
This course is designed to foster learning through individual investigation and interaction with others. Your participation is a critical element to the success of everyone in the class. This portion of your final grade will be determined by the quality of your active participation in class, eCampus Modules and/or use of QTs and technologies in class. Participation accounts for 10% of your overall grade.

Grade Calculation
Final Project (FP): 40%
Reflection Journals and Responses (RJ) (3): 18%
Quick Tasks (QT) (8): 32%
Participation: 10%
100%

A=90-100; B=80-89.9; C=70-79.9; D=60-69.9; F=Below 60

Extremely important: if you fail the writing portion of the class, you will receive a failing grade for the whole course. Written work accounts for 58% of your final grade. Therefore, it is extremely important that you turn in your best work on all written assignments.
Modules and Class Technology

eCampus: This class will extensively use TAMU eCampus (ecampus.tamu.edu), for assignments, readings, discussions etc. There is no textbook.

Modules: This class is divided into modules. The entire module’s information, including readings, videos, downloads and assignments will be available via eCampus. You are expected to complete the module online before the first class meeting of the week. Information delivered in the module will be discussed in class, and will the subject matter for class discussions, workshops and exercises.

Paper and Pencil/Pen: it is essential that you always bring paper and a pencil or pen to all class meetings. At times you will be required to write, share and submit work in class.

WiFi Technology: In this class we will using your handheld devices (such as smart phones, tablets, iPhones etc.) and/or your tablets or laptops as means of actively participating in class activities. You will be required to install small free apps on your device to communicate in the classroom. If you do not have a WiFi device, laptops are available to checkout, free, from the TAMU library.

Please respect our learning environment, and only use electronic devices for class related activities!

Course Policies

Attendance: Attending the class is the responsibility of the student and no formal attendance will be taken. That being said, this is a collaborative and interactive class; a large portion of your assessment will be based on work conducted in class—if you miss those activities, undoubtedly your grades will suffer.

Makeup Policy: You are responsible for knowing the course schedule and assignment due dates outlined in this syllabus. For assignments that are missed due to absences, please refer to Student Rule 7 (http://student-rules.tamu.edu/rule07) for details concerning which absences are excused. Students with excused absences must provide written notification prior to the date of the absence, or in cases where advanced notification is not possible, within two working days following the absence. If you do have a university-excused absence please contact the instructor as soon as possible to arrange a makeup schedule.

QTs missed due to unexcused absences will receive a zero (remember that the two lowest will be dropped).

RJs and RJRs can be submitted up to 48 hours past their respective deadlines for a 25% penalty. Assignments submitted after that will receive a zero.

Due to the collaborative nature of assignments in this course and the logistics of peer review, late projects will receive a grade of zero unless supported by an approved university absence.

Americans with Disabilities Act (ADA):
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, currently located in the Disability Services building at the Student Services at White Creek complex on west campus or call 979-845-1637. For additional information, visit http://disability.tamu.edu.

Plagiarism and Cheating

Students are bound by the Aggie honor code not to lie, cheat, steal, or tolerate those who do. If you violate the code (e.g., by plagiarizing something or cheating) there will be no second chances—you will receive a zero for the assignment and may receive an F for the class.

Plagiarism is my ‘pet peeve’!

All cases of plagiarism and cheating will be handled according to university policies. For further information on cheating and plagiarism, go to http://aggiehonor.tamu.edu.
Ground Rules (aka Classroom Etiquette)

Throughout the course, you are likely to encounter new ideas through the course materials, and you will learn to look at old ideas in new ways.

We will be reading and discussing material that may challenge the way you think about things, both academically and personally. We need to remain open-minded and listen to one another; above all, it is crucial to maintain respect in all classroom interactions.

Second, it is important that you show respect to others by arriving to class on time, not packing up your stuff before class finishes, and by only using smart or cell phones, computers and other communication devices for class related activities.

..Some final advice....

☑️ **Be Prepared.** To be successful, you need to work through assigned materials carefully before each class meeting, pay attention during class, and actively contribute to class discussions.

☑️ **Take notes during class.** You should take notes during each class meeting. Learning to be a critical thinker includes learning how to take effective notes. Don’t just write down what is said in class or what is presented on a Powerpoint slide. Consider writing down your thoughts on the subject as well as any questions that you have about the material.

☑️ **Learn to Think Critically.** In this class, you are encouraged to think critically about the course materials. In other words, think about what you are reading and learning in class and learn to ask the following questions:

- What is being said? What is the argument being put forward?
- Who is conveying the message? What is their cultural position and background?
- When was it written? Is the argument shaped by a particular historical moment? How would the argument differ if written during a different time?
- Why is the message being conveyed? Does the author have an agenda? If so, what is it?
- What is the evidence? What kinds of evidence and data are used to make an argument? Does the evidence support the argument? Is the evidence sufficient?
- Is the argument sound?

☑️ **If you have questions.... ASK!** Remember, if you are thinking it, it more than likely that someone else is also thinking it.

☑️ **Utilize office hours.** Office hours provide a regular time when you can expect me to be available for discussion of individual concerns. If you are having problems understanding the material or you would like to talk about the course assignments, please come and visit me.
Class Schedule

<table>
<thead>
<tr>
<th>Module</th>
<th>Date</th>
<th>In Large Class (Tuesdays or Thursdays) (100 Students)</th>
<th>Date</th>
<th>In Small Class (Wednesdays or Fridays) (25 Students)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Instructor Introduction Syllabus and technology review</td>
<td></td>
<td>Student introductions Introducing Your Final Project (FP) Group exercises incl. examining the syllabus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science, engineering and humans... Why Anthropology? Bring practice QT to class</td>
<td></td>
<td>Role Play: Water boiling in a small village –or- OD in India</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>What is Holism? What is Culture? What is Ethnocentrism? Submit in eCampus and bring paper copy to class: QT#1 Due before 8am: RJ#1</td>
<td></td>
<td>Exercise: Anthropology in practice - Observing and Interviewing the other. Crafting your email to your interviewee. Due before 8am: RJRs#1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Diversity, inclusion and learned ignorance Submit in eCampus and bring paper copy to class: QT#2</td>
<td></td>
<td>What is, and why support, diversity?</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Paradigms & Epistemology Submit in eCampus and bring paper copy to class: QT#3</td>
<td></td>
<td>Engaging in Meta-reflexivity and creating interview questions</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>What is Ethics? Submit in eCampus and bring paper copy to class: QT#4 Due before 8am: RJ#2</td>
<td></td>
<td>Exercise: Creating a Code of Ethics Submit in eCampus and bring paper copy to class: FP Proposal Due before 8am: RJRs#2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>The Code of Ethics in your discipline. What is valued and why? What results? Worldview Submit in eCampus and bring paper copy to class: QT#5</td>
<td></td>
<td>TAMU Writing Center: FP workshop</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Critical Cultural Relativism: Guest speaker (Volcanic Virunga) – or: Hot Houses in Guatemala Submit in eCampus and bring paper copy to class: QT#6 Due before 8am: RJ#3</td>
<td></td>
<td>Exploring Definitions & Perspectives Role Play: Unintended ‘Sticky’ Consequences Submit in eCampus and bring paper copy to class: Interim Checkpoint of FP Due before 8am: RJRs#3</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Fractious Problem Solving & Responsible Innovation: Self Driving Cars Submit in eCampus and bring paper copy to class: QT#7</td>
<td></td>
<td>Exercise: Analyzing Fractious Problems: cosmic questions, cloning John Lennon, weapons manufacture.</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Myths, naturalistic fallacies and assumptions Submit in eCampus and bring paper copy to class: QT#8 Due before 8am: RJ#4</td>
<td></td>
<td>TAMU Writing Center Workshop: Mechanics of writing Due upload before 8am: Evidence of FP Interview Due before 8am: RJRs#4</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Technological Determinism & Cultural Construction of Technology. Due before 8am: RJ#5</td>
<td></td>
<td>Workshop: Peer Review of FP Due before 8am: RJRs#5</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Bribery, corruption, nepotism, gifts, and grease payments Submit in eCampus and bring paper copy to class: QT#9</td>
<td></td>
<td>Exercise: Whistle blowing Submit in eCampus and bring paper copy to class: Best Draft of FP</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Risk, harm, (in) equality and the environment Guest Speaker or Emic perspectives on Nuclear Energy Submit in eCampus and bring paper copy to class: QT#10</td>
<td></td>
<td>Popsicle drop-in with one-on-one FP help</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Final Wrap up with guided discussion: Ship breaking in Bangladesh</td>
<td></td>
<td>Submit in eCampus and bring paper copy to class: Final Version of FP Do in class: Final Presentations</td>
</tr>
</tbody>
</table>
Viewing: **ANTH 270 370**: Cultural Diversity and Ethics

Formerly Known As: ANTH 370

Last approved: 08/28/17 3:15 am

Last edit: 11/12/17 9:37 pm

Changes proposed by: jwinking

Contact(s)

<table>
<thead>
<tr>
<th>Name</th>
<th>E-mail</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeff Winking</td>
<td>jwinking@tamu.edu</td>
<td>9794585627</td>
</tr>
</tbody>
</table>

Rationale for Course

Edit

The proposed changes are part of a routine curriculum review.

Course prefix: ANTH
Course number: 270 370

Department: Anthropology

College/School: Liberal Arts

Academic Level: Undergraduate

Undergraduate course level justification (Select One)

College/Program Course Level Rubric

Effective term: 2018-2019 2017-2018

Complete Course Title: Cultural Diversity and Ethics

Abbreviated Course Title: CULTURAL DIVERSITY & ETHICS

Catalog course description:

Examination of the cultural construction of ethical values and how cultural diversity, including beliefs, values and ways of doing business, impacts human technological innovation; focuses on science, technology and engineering projects; focuses on developing a holistic, social-science mindset and application of critical thinking skills.

Prerequisites and Restrictions:

Junior or senior classification or approval of instructor

Concurrent Enrollment: No

Should catalog prerequisites / concurrent enrollment be enforced?: No

Crosslistings: No Crosslisted With

Stacked: No Stacked with

Semester: 3 Contact Hour(s): Lecture: 3 Lab: 0 Other: 0

Credit Hour(s): 3

Repeatable for credit? No

CIP/Fund Code: 4502010001

Default Grade Mode: Letter Grade (G)

https://nextcatalog.tamu.edu/courseadmin/
Method of instruction: Lecture

Will sections of this course be taught as non-traditional? (i.e., parts of term, distance education)
Yes

Learning Outcomes
- Meets traditional face-to-face learning outcomes.

Describe how learning outcomes are met or provide justification why they are not met.
- Some sections will be taught as Study Abroad. Instructors of different sections meet prior to semesters to ensure that curricula and learning outcomes are comparable across all sections.

Hours
- Meets traditional face-to-face hours.

Describe how hours are met or provide justification why they are not met.
- Some sections will be taught as Study Abroad. Face-to-face hours are calculated for each Study Abroad section to ensure they are sufficient. Additional class time is scheduled on campus if necessary.

Will this course be taught as a distance education course?
No

Is 100% of this course going to be taught in Texas?
Yes

Will classroom space be needed for this course?
Yes

This will be a required course or an elective course for the following programs:

Required (select program)

- (BS-ENGE) College of Engineering
- (BS-ENGE) College of Engineering

Elective (select program)

- (BA-ANTH) Anthropology - BA

Has/will this course be(en) submitted for core curriculum consideration?
Yes

Proposed Core Foundational Component Area
Core Lang, Phil, Culture(KLPC)

Approved Foundational Component Area

Has/will this course be(en) submitted for Writing or Communication consideration?
Yes

Has/will this course be(en) submitted for ICD consideration?
Yes
Course Syllabus

<table>
<thead>
<tr>
<th>Syllabus:</th>
<th>Upload syllabus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upload syllabus</td>
<td>ANTH270_Syllabus V8-1.pdf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Letters of support or other documentation</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Course number was changed from 370 to 270 to better reflect the nature of the course given new guidelines concerning class levels.</th>
</tr>
</thead>
</table>

Reviewer Comments	Sandra Williams (sandra-williams) (11/12/17 9:42 pm): ANTH 370 was previously approved to be taught in a non-traditional format (NTFA).
	Sandra Williams (sandra-williams) (11/12/17 9:45 pm): Wow...what a syllabus.
	Sandra Williams (sandra-williams) (12/05/17 10:24 am): UCC approved in December.

Key: 16982