Report of the University Curriculum Committee
December 8, 2006

The University Curriculum Committee recommends approval of the following:

1. New Courses

 Introduction to technical computing methods in the atmospheric sciences. Students learn to use specialized software and data analysis systems for meteorological applications. Prerequisite: Junior or senior classification.

 ATMO 456. Practical Weather Forecasting. (1-4). Credit 3. Advanced weather forecasting techniques with application to a variety of forecasting problems, both public and private sector. Prerequisites: ATMO 336 or 455; junior or senior classification.

 COSC 301. Construction Surveying. (1-3). Credit 2. Practical applications of surveying to the practice of construction project management; distance, grade and angular measurement; surveying equipment and its application to construction layout and control; surveying documentation and field work; introduction to other three dimensional measurement and positioning systems. Prerequisite: Admission to upper level in College of Architecture.

 MKTG 484. Marketing Internship. (3-0). Credit 3. Professional internship in a for-profit or not-for-profit organization under the supervision of a marketing professional and direction of a Texas A&M University marketing faculty member. Prerequisites: MKTG 321; junior or senior classification; approval of instructor.

2. Change in Courses

 Student Learning Center
 Change in course prefix for CAEX courses to SLCX

 CAEX 001 CAEX 002 CAEX 003

 Change in course prefix for CAEN courses to STLC

 CAEN 001 CAEN 002 CAEN 003
 CAEN 101 CAEN 102 CAEN 289
Dwight Look College of Engineering
Department of Industrial and Systems Engineering: change in course prefix for all INEN courses to ISEN

<table>
<thead>
<tr>
<th>INEN 101</th>
<th>INEN 316</th>
<th>INEN 424</th>
</tr>
</thead>
<tbody>
<tr>
<td>INEN 220</td>
<td>INEN 333</td>
<td>INEN 425</td>
</tr>
<tr>
<td>INEN 285</td>
<td>INEN 411</td>
<td>INEN 430</td>
</tr>
<tr>
<td>INEN 302</td>
<td>INEN 414</td>
<td>INEN 455</td>
</tr>
<tr>
<td>INEN 303</td>
<td>INEN 416</td>
<td>INEN 459</td>
</tr>
<tr>
<td>INEN 314</td>
<td>INEN 420</td>
<td>INEN 485</td>
</tr>
<tr>
<td>INEN 315</td>
<td>INEN 421</td>
<td>INEN 489</td>
</tr>
</tbody>
</table>

ELEN 248. Introduction to Digital Design.

Prerequisite
From: ELEN 214 or equivalent, or registration therein.
To: Admission to upper level.
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional
Submit original form and 2 copies. Attach a course syllabus to each.

1. This request is submitted by the Department of Atmospheric Sciences

2. Course prefix, number and complete title ATMO 321 Computer Applications in the Atmospheric Sciences

3. Course description (not more than 50 words) Introduction to technical computing methods in the atmospheric sciences. Students learn to use specialized software and data analysis systems for meteorological applications.

4. Prerequisite(s) Junior or senior classification Cross-listed with

5. Is this a variable credit course? □ Yes □ No If yes, from _______ to _______.

6. Is this a repeatable course? □ Yes □ No If yes, this course may be taken _______ times. Will the course be repeated within the same semester/term? □ Yes □ No

7. Has this course been taught as a 489/689? □ Yes □ No If yes, how many times? _______ Indicate the number of students enrolled for each academic period it was taught. 17

8. This course will be:
 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history) B.S. in Meteorology
 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)

9. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.

10. Prefix Course # Title (exclude punctuation)
 ATMO 321 COMP APP ATMOS SCIENCE

 Lect. Lab SCH Subject Matter Content Code Admin. Unit Acad. Year FICE Code
 0 2 0 2 0 3 4 0 0 4 0 1 0 0 0 0 0 3 5 1 0 1 0 0 0 0 0 3 6 3 2

 Approval recommended by:
 Head of Department Date
 Head of Department (if cross-listed course) Date

 Submitted to Coordinating Board by:
 Dean of College Date

 Director of Academic Support Services Date

To have this form reviewed, please send to Linda F. Lacey, Mail Stop 1265 or fax to 847-8737.
OAR/AS-584

3 of 30 C
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional
Submit original form and 2 copies. Attach a course syllabus to each.

1. This request is submitted by the Department of Atmospheric Sciences

2. Course prefix, number and complete title: ATMO 321 Computer Applications in the Atmospheric Sciences

3. Course description (not more than 50 words): Introduction to technical computing methods in the atmospheric sciences. Students learn to use specialized software and data analysis systems for meteorological applications.

4. Prerequisite(s): None

5. Is this a variable credit course? ☐ Yes ☐ No

If yes, from _______ to _______. Cross-listed courses require the signatures of both department heads.

6. Is this a repeatable course? ☐ Yes ☐ No

If yes, this course may be taken _______ times. Will the course be repeated within the same semester/term? ☐ Yes ☐ No

7. Has this course been taught as a 489/689? ☐ Yes ☐ No

If yes, how many times? _______. Indicate the number of students enrolled for each academic period it was taught.

8. This course will be:
 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)
 B.S. in Meteorology
 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)

9. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.

10. Prefix Course # Title (exclude punctuation)

| ATMO | 321 | Computer Applications in the Atmospheric Sciences |

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>SCH</th>
<th>Subject Matter Content Code</th>
<th>Admin. Unit</th>
<th>Acad. Year</th>
<th>FICE Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>02</td>
<td>03</td>
<td>4, 0, 0, 1, 0, 0</td>
<td>0, 5</td>
<td>1, 0, 1</td>
<td>0, 0, 0, 3, 6, 3, 2</td>
</tr>
</tbody>
</table>

Do not complete shaded area.

Approval recommended by:
Head of Department: ____________________________ Date: 11/6/06
Head of Department (if cross-listed course): ____________________________ Date: 11/6/06

Chair of College Review Committee: ____________________________ Date: 11/6/06
Dean of College: ____________________________ Date: 11/6/06

Submitted to Coordinating Board by:
Director of Academic Support Services: ____________________________ Date: ____________________________

To have this form reviewed, please send to Linda F. Lacey, Mail Stop 1265 or fax to 847-8737.
OARAS 594

4 of 30 C
Atmospheric Sciences 321
Computer Applications in Atmospheric Science

Instructors: Prof. Kenneth Bowman, 1014A Eller Bldg., 862-4060, k-bowman@tamu.edu.

Course web page: http://csrp.tamu.edu/atmo489.comp/.

Class time and location: Combined lecture and laboratory, 09:00–10:50 TR, 1107 Eller Building.

Office hours: Bowman: 13:30-14:30 MW; other times by appointment.

Text: An Introduction to Programming with IDL: Interactive Data Language by K. Bowman.

Prerequisites: Junior or senior classification

Exams: There will be quizzes approximately every two weeks. For rules and regulations regarding class attendance; behavior; missed classes, homework, quizzes, and exams; and others, please consult the 2006-2007 Texas A&M University Regulations Handbook at http://student-rules.tamu.edu/

Homework: Approximately one programming assignment per week. There will also be a final project that will count for 10% of your grade.

Grades: Quizzes, 45%; homework, 45%, project 10%. Grade distribution: 90-100%, A; 80-89%, B; 70-79%, C; 60-69%, D; less than 60%, F.

Course outline (by week)

2. Representing meteorological data. Integer and floating-point constants and variables. (Ch. 5-6)
3. Quiz 1. Thermodynamic calculations. Arrays in IDL. Searching and sorting
4. Radiosonde and dropsonde data. Reading and writing text data files. String variables.
6. Control structures (loops, conditional statements).
8. Coordinates for physical data. IDL data structures.

Americans with Disabilities Act (ADA) Policy Statement The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities in Room B118 of Cain Hall, or call 845-1637.

Plagiarism The materials used in this course are copyrighted. These materials include but are not limited to syllabi, quizzes, exams, lab problems, in-class materials, review sheets, and additional problem sets. Because these materials are copyrighted, you do not have the right to copy the handouts, unless permission is expressly granted.

As commonly defined, plagiarism consists of passing off as one's own the ideas, words, writings, etc., which belong to another. In accordance with this definition, you are committing plagiarism if you copy the work of another person and turn it in as your own, even if you should have the permission of that person. Plagiarism is one of the worst academic sins, for the plagiarist destroys the trust among colleagues without which research cannot be safely communicated.

If you have any questions regarding plagiarism, please consult the latest issue of the Texas A&M University Student Rules, http://student-rules.tamu.edu, under the section Scholastic Dishonesty.

Aggie Honor Code An Aggie does not lie, cheat, or steal or tolerate those who do. Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not excuse any member of the TAMU community from the requirements or the processes of the Honor System.

For additional information please visit: http://www.tamu.edu/aggiehonor/.
Russell, Roxanna R

From: Tchakerian, Vatche [v-tchakerian@tamu.edu]
Sent: Friday, November 03, 2006 9:11 AM
To: rrusell@tamu.edu
Subject: FW: Computer science approval for ATMO 321

rr: I believe that the email below should be sufficient to send ATMO 321 to Linda Lacey for UCC, thanks, vpt

Vatche P. Tchakerian, Associate Dean for Academics

Professor of Geography and Geology & Geophysics
College of Geosciences
Texas A&M University
College Station, TX 77843-3148
Voice: (979) 845-3651
Fax: (979) 845-0056

From: Kenneth P. Bowman [mailto:k-bowman@tamu.edu]
Sent: Friday, November 03, 2006 8:14 AM
To: Vatche P. Tchakerian
Cc: Orville, Richard; Christie Dunn
Subject: Computer science approval for ATMO 321

Vatche,

We discussed the new ATMO computing course with CPSC via e-mail (attached below). They have offered to send a formal letter of support. Is that necessary, or is their e-mail sufficient?

(Valerie Taylor is the dept. head of CPSC.)

Thanks, Ken

Begin forwarded message:

From: "Valerie Taylor" <taylor@ca.tamu.edu>
Date: November 3, 2006 8:02:25 AM CST
To: "Richard Orville" <orville@tamu.edu>
Cc: "Kenneth P. Bowman" <k-bowman@tamu.edu>, "CPSC Friesen, Donald" <friesen@ca.tamu.edu>, "Jennifer L. Welch" <welch@ca.tamu.edu>, "Valerie Taylor" <taylor@ca.tamu.edu>
Subject: RE: New course within our department

Thanks, Richard, for the details about the course. We are all in agreement that we are supportive of your new course. Please let me know if a formal letter is needed.

Thanks,
Valerie

11/6/2006
-----Original Message-----
From: Richard Orville [mailto:rorville@tamu.edu]
Sent: Thursday, November 02, 2006 3:15 PM
To: Valerie Taylor
Cc: Richard Orville; Kenneth P. Bowman; CPSC Friesen, Donald; Jennifer L. Welch
Subject: Re: New course within our department

Dear Valerie,

Our new course will cover computer applications to a wide range of meteorological topics, including thermodynamic and radiation calculations; meteorological data products such as radiosonde and dropsonde data, numerical forecast model output, and satellite imagery; meteorology-specific data formats, such as GRIB, HDF, and netCDF; map projections and plotting data on maps; and calculation of climatological statistics. The course is taught using IDL (Interactive Data Language), which is widely used in meteorology. Due to the highly-specialized and discipline-specific nature of the course material, we feel the course is better taught in Atmospheric Sciences.

I am attaching the "ATMO 321 plan" or course syllabus. I hope that you agree that because of the discipline-specific nature of this class, it is best that our department teach the course.

Thank you,
Richard

Begin forwarded message:

From: "Valerie Taylor" <taylor@cs.tamu.edu>
Date: November 2, 2006 12:04:43 AM CST
To: "Richard Orville" <rorville@tamu.edu>
Cc: "Kenneth P. Bowman" <k Bowman@tamu.edu>, "CPSC Friesen, Donald" <friesen@cs.tamu.edu>, "Jennifer L. Welch" <welch@cs.tamu.edu>, "Valerie Taylor" <taylor@cs.tamu.edu>
Subject: RE: New course within our department

Hello Richard:

I apologize for the delay in responding. It would be good to have more details about the discipline-specific course request. Can you provide the course syllabus?

I am including Don Friesen, the associate head for academics, and Jennifer Welch, the chair of the CS Undergraduate Curriculum Committee, as I would like to have their input on this issue as well.

Thanks,
Valerie
-----Original Message-----
From: Richard Orville [mailto:rorville@tamu.edu]
Sent: Tuesday, October 24, 2006 11:18 AM
To: Valerie Taylor
Cc: Richard Orville; Kenneth P. Bowman
Subject: New course within our department

Dear Valerie,

The Department of Atmospheric Sciences is planning to replace our existing undergraduate computer science requirement (CPSC 203 or 206) with a discipline-specific class to be taught within the department. We discussed this via e-mail with Glen Williams (attached below).

We are preparing our new course request and would appreciate a short e-mail from you in support of the request. If you have any questions, please contact me or Prof. Bowman (862-4060).

Best wishes and thank you,
Richard

Richard Orville
Professor and Head
Dept. of Atmospheric Sciences
Texas A&M University
College Station, TX 77843-3150
Phone: 979-845-7671
Fax: 979-862-4466
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional

Submit original form and 2 copies. Attach a course syllabus to each.

1. This request is submitted by the Department of Atmospheric Sciences

2. Course prefix, number and complete title ATMO 458: Practical Weather Forecasting

3. Course description (not more than 50 words) Advanced weather forecasting techniques with application to a variety of forecasting problems, both public and private sector.

4. Prerequisite(s) ATMO 336 or ATMO 455; junior or senior classification

5. Is this a variable credit course? ☐ Yes ☐ No ☐ If yes, from _____ to ______.

6. Is this a repeatable course? ☐ Yes ☐ No ☐ If yes, this course may be taken _____ times. Will the course be repeated within the same semester/term? ☐ Yes ☐ No

7. Has this course been taught as a 489/689? ☐ Yes ☐ No ☐ If yes, how many times? _____ 2 ____ Indicate the number of students enrolled for each academic period it was taught. 05A: 15 06A: 22

8. This course will be:
 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)
 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)

B.S. in Meteorology

9. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.

10. Prefix | Course # | Title (exclude punctuation) | ATMO | 456 | PRACTICAL WEATHER FORECASTING | WEATHER | FORECASTING

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>SCH</th>
<th>Subject Matter Content Code</th>
<th>Admin. Unit</th>
<th>Acad. Year</th>
<th>FICE Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>04</td>
<td>03</td>
<td>4</td>
<td>04</td>
<td>1</td>
<td>00</td>
</tr>
</tbody>
</table>

Do not complete shaded area.

Approval recommended by:

Head of Department
Date

Chair of College Review Committee
Date

Head of Department (if cross-listed course)
Date

Dean of College
Date

Submitted to Coordinating Board by:

Dean of College
Date

Director of Academic Support Services
Date

Effective Date

To have this form reviewed, please send to Linda F. Lacey, Mail Stop 1265 or fax to 847-8737.

OAK/AS-98

10 of 30 C
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional
Submit original form and 2 copies. Attach a course syllabus to each.

1. This request is submitted by the Department of Atmospheric Sciences

2. Course prefix, number and complete title ATMO 456: Practical Weather Forecasting

3. Course description (not more than 50 words) Advanced weather forecasting techniques with application to a variety of forecasting problems, both public and private sector.

4. Prerequisite(s) ATMO 338 or ATMO 455

5. Cross-listed with

6. Is this a variable credit course? □ Yes □ No If yes, from _______ to _______.

7. Is this a repeatable course? □ Yes □ No If yes, this course may be taken ______ times. Will the course be repeated within the same semester/term? □ Yes □ No

8. Has this course been taught as a 489/689? □ Yes □ No If yes, how many times? 2

9. This course will be:
 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)

 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)

 B.S. in Meteorology

10. Prefix Course # Title (exclude punctuation) ATMO 456 PRACTICAL WEATHER FORECASTING
 Lect. Lab SCH Subject Matter Content Code Admin. Unit Acad. Year FICE Code
 0 1 0 4 0 3 4 0 1 0 0 0 2 0 3 5 1 6 7 0 3 0 0 3 6 3 2

Approval recommended by:

Head of Department Date

Chair, College Review Committee Date

Dean of College Date

Submitted to Coordinating Board by:

Director of Academic Support Services Date

Effective Date

To have this form reviewed, please send to Linda F. Lacey, Mail Stop 1265 or fax to 847-8737.

OAR/AS-5/04

11 of 30 C
ATMO 456
Practical Weather Forecasting
(same syllabus)

John W. Nielsen-Gammon, instructor
Office: O&M 1012A
Email: n-g@tamn.edu
Phone: 2-2248
Office hours: Monday 10:00-11:30, anytime I’m around, or by appointment

Teaching assistant: To be named.

Prerequisite: ATMO 336 or ATMO 455; junior or senior classification
Credits/contact: (1-4) Credit 3.
Course Schedule:
Lecture Friday 1:50-2:40 O&M Room 1210
Laboratory Monday & Wednesday, 1:50-3:50 O&M Room 1201
Required Textbook: Weather Forecasting Handbook, by Tim Vasquez

Friday In-class Quizzes: 15% of grade, based on textbook, consisting of four questions (at least
two drawn from “review questions” at end of chapters)
Jan. 20: Chapter 1 — Fundamentals
Jan. 27: Chapter 12 — Numerical Guidance
Feb. 3: Chapter 10 — Winter Forecasting
Feb. 10: Chapter 2 — Observation
Feb. 17: Chapter 3, section 1 — Chart Analysis
Feb. 24: Chapter 3, sections 2-6 — Other Tools
Mar. 3: Chapter 4 — Physics
Mar. 10: Chapter 5 — Fronts and Jets
Mar. 24: Chapter 6, sections 1-6 — Motion, part 1*
Mar. 31: Chapter 6, sections 7-10 — Motion, part 2
Apr. 7: Chapters 7 and 8 — Barotropic and Baroclinic Systems
Apr. 14: No classes
Apr. 21: Chapter 9 — Convective Weather
Apr. 28: Chapter 11 — Tropical Weather
May 2: Redefined Friday: Class, but no quiz

*The Mar. 24 quiz will consist of four original questions and no “review questions”.

Learning Modules: 25% of grade. UCAR/COMET Meteorology Education and Training
(METED) learning modules may be accessed from
<http://meted.ucar.edu/resource_modlist.php>. A list of acceptable modules, with their
descriptions, will be available on the ATMO 489 course website.

During the course of the semester, each student will write five forecast exercise papers (2 pages
plus figures) demonstrating proficiency with the modules by applying each of them to a particular
real-time forecast problem, and six verification papers (1 page plus figures) assessing the
accuracy of that forecast and diagnosing any errors.

The modules and exercise papers may be done in any order, except that it of course makes sense
to read a module prior to applying it. The exercise papers must be submitted via email in Word,
RTF, plaintext, or HTML format prior to the forecast event actually taking place, and the corresponding verification paper must be completed and submitted no more than 48 hours after the forecast verifies. Clearly identify the COMET module at the beginning of each forecast paper.

You can choose any module to be the focus of the forecast and verification; it would be wise to monitor the weather situation and pick modules that are particularly appropriate. Not waiting until the due date lets you pick especially interesting situations. If you have preferred modules, keep an eye on the weather situation for a good time to make a forecast. The first exercise paper must be submitted by February 6, with successive deadlines every two weeks, not counting Spring Break.

Each module writeup and verification is worth a combined 4% of the grade, making a total of 20%. The final 5% consists of anonymous reviews of other students’ writeups. Each writeup will be randomly assigned to two students, one to offer advice on writing quality and the other to offer advice on forecasting. The reviews will be graded on the basis of clarity and (apparent) usefulness.

Laboratory Notebooks and Presentations: 30% of grade. Each student will keep a laboratory notebook consisting of forecasting notes, forecasts, analyses, and other in-class lab assignments. The notebook will be turned in for evaluation at the end of each two-week lab segment. Use your notebook as an opportunity to show off your knowledge and reasoning ability.

Sample Laboratory Outline:
Jan. 18: Web resource development
Jan. 23-Feb. 1: Ensemble Prediction
Feb. 6-Feb. 15: Snow Forecasting
Feb. 20-Mar. 1: Potential Vorticity
Mar. 6-Mar. 22: Full Frontal Anatomy
Mar. 27-Apr. 5: Minimum Temperatures
Apr. 10-Apr. 19: Model of Choice
Apr. 24-May 1: Applied Forecasting

Forecasting Project: 15% of grade. Each student will conduct a forecasting project, consisting of making and providing a forecast of value to a private company, and present to the class the background, the forecast, the verification, and its value. The private company will be of the student’s own choosing. The forecasting project presentations will be made the week after Spring Break.

Business Paper: 15% of grade. Each student will create a business model for a weather forecasting company. The ten-page paper will describe the proposed business model: the customer base, the competition, the pricing model, the growth plan, the advertising plan, and the startup costs. The initial draft of the paper is due April 8, and the final draft is due April 26. Students are free to turn in multiple drafts for comment.

Final Grade: With the exception of the quizzes, all grades in the course will be letter grades; grades will be averaged in the proportions given above to determine the final grade for the course. Quiz scores will be added together and converted to letter grades on the basis of 90-100% = A, 80-90% = B, etc.
Aggie Code of Honor: An Aggie does not lie, cheat, or steal, or tolerate those who do. Incidents of academic dishonesty, including plagiarism, will be dealt with according to established procedures. See http://www.tamu.edu/aggiehonor/ for more information.

Absences will be handled in accordance with Student Rules (http://student-rules.tamu.edu/rule7.htm).

The materials used in this course are copyrighted. These materials include but are not limited to syllabi, quizzes, exams, lab problems, in-class materials, review sheets, and additional problem sets. Because these materials are copyrighted, you do not have the right to copy the handouts, unless permission is expressly granted.

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities in Room B118 of Cain Hall, or call 845-1637.
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional

Submit original form and 2 copies. Attach a course syllabus to each.

1. This request is submitted by the Department of Construction Science

2. Course prefix, number and complete title COSC 301 Construction Surveying

3. Course description (not more than 50 words) Practical applications of surveying to the practice of construction project management; distance, grade and angular measurement; surveying equipment and its application to construction layout and control; surveying documentation and field work; introduction to other three-dimensional measurement and positioning systems.

4. Prerequisite(s) Upper-Division in College of Architecture Cross-listed with Cross-listed courses require the signatures of both department heads.

5. Is this a variable credit course? Yes □ No □ If yes, from _____ to _____.

6. Is this a repeatable course? Yes □ No □ If yes, this course may be taken _____ times. Will the course be repeated within the same semester/term? Yes □ No

7. Has this course been taught as a 489/689? Yes □ No □ If yes, how many times? 3 Indicate the number of students enrolled for each academic period it was taught: 06A - 49, 06B - 86, 06C - 57

8. This course will be:
 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)
 B.S. in Construction Science
 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)

9. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.

10. Prefix Course # Title (exclude punctuation) COSC 301 Construction Surveying

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>SCH</th>
<th>Subject Matter Code</th>
<th>Content Code</th>
<th>Admin. Unit</th>
<th>Acad. Year</th>
<th>FICE Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>03</td>
<td>02</td>
<td>14, 04, 01, 00, 06</td>
<td>07, 07, 07, 08</td>
<td>00, 03, 06, 32</td>
<td>00, 03, 06, 32</td>
<td></td>
</tr>
</tbody>
</table>

Do not complete shaded area.

Approved recommended by:

[Signature]

[Name]

Head of Department Date 12/11/06

Chair, College Review Committee Date 12/11/06

Dean of College Date 12/11/06

Submitted to Coordinating Board by:

[Signature]

[Name]

Dean of College Date

Director of Academic Support Services Date Effective Date

To have this form reviewed, please send to Linda F. Lacey, Mail Stop 1265 or fax to 847-8737.
OAR/AS-5/04

15 of 30 C
COSC 301 – Construction Surveying and Layout

Catalog Description

Practical application of surveying to the practice of construction project management; distance, grade and angular measurement; surveying equipment and its application to construction layout and control; surveying documentation & field work; introduction to other three dimensional measurement & positioning systems

Learning Outcomes

At the end of the course the student should be able to:

- Apply various surveying techniques to measure and represent three dimensional space
- Apply various surveying techniques to position construction in three dimensional space
- Select appropriate surveying equipment for the measurement of three dimensional space
- Select appropriate surveying equipment to position construction in three dimensional space
- Collect and record survey data
- Compare other three dimensional measurement methods such as Global Positioning Systems, Photogrammetry and Laser Scanning

Instructor Information

1. Name: Dr. Richard Burt, MRICS
2. Office Location: A422 Langford Architecture Building
3. Telephone: 845-0994
4. Email: rburt@neo.tamu.edu

Prerequisites for the Course: Admission to upper-level in College of Architecture

Listing of Course Topics

1. Basic Principles
 - Mathematics & Trigonometry review
 - Units of Measurement
 - Accuracy & Precision
 - Errors in Surveying
 - Field Book Keeping
2. Linear Measurement
 - Approximate Measurement – Pacing, Scaling
 - Plumbing
 - Equipment for Linear Measurement
• Offset Measurement

3. Building Surveys
 • Types of Building Survey
 • Recording techniques
 • Production of plans, elevations

4. Leveling
 • Principles of leveling
 • Equipment for leveling

5. Practical Applications of Leveling
 • Fieldwork procedure and field book entries
 • Series leveling
 • Area Leveling & Contouring
 • Building Elevation

6. Angular Measurement
 • Principles of angular measurement
 • Equipment for Angular measurement

7. Practical Applications for Angular Measurement
 • Traverse surveys

8. Building Layout
 • Control lines
 • Batterboards
 • Structural layout
 • Partition layout

9. Electronic Distance Measurement
 • Principles of electronic distance measurement
 • Equipment for electronic distance measurement

10. Other three-dimensional measurement systems
 • Global Positioning Systems
 • Photogrammetry
 • Laser Scanning

Grading

Your final grade will be based on the following:

Participation in field exercises 40%
Completion of Field Book 20%
Quiz 1 20%
Quiz 2 20%

Assignments, Tests, Etc.

There will be 10 field exercises that will require satisfactory completion to obtain a grade. If you fail to complete a field exercise you will loose 5% of your final grade. All
field exercises will be conducted in groups of three which I will assign. Adequate time
will be set aside to carry out the field work and produce any drawings that may be
required.

Textbook

Surveying & Layout Fundamentals for Construction by Paul W. Holley, Wiley. This is a
DVD and costs $50. You are required to have played this DVD all the way through prior
to commencing the class.

You will also need to buy a Surveyors Field Book and a pack of grided or squared paper.

Americans with Disabilities Act (ADA) Policy Statement

The Americans with Disabilities Act (ADA) is a federal antidiscrimination statute that
provides comprehensive civil rights protection for persons with disabilities. Among other
things, this legislation requires that all students with disabilities be guaranteed a learning
environment that provides for reasonable accommodation of their disabilities. If you
believe you have a disability requiring an accommodation, please contact the Department
of Student Life, Services for Students with Disabilities in Cain Hall, Rm. B118, or call
845-1637.*

Academic Integrity Statement:

“An Aggie does not lie, cheat or steal, or tolerate those who do.”

Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional

Submit original form and 2 copies. Attach a course syllabus to each.

1. This request is submitted by the Department of ____________________________

2. Course prefix, number and complete title MKTG 484, Marketing Internship

3. Course description (not more than 50 words) Professional internship in a for-profit or not-for-profit organization under the supervision of a marketing professional and direction of a Texas A&M University marketing faculty member.

4. Prerequisite(s) ____________________________ Cross-listed with ____________________________

5. Is this a variable credit course? ☐ Yes ☐ No If yes, from ______ to ______.

6. Is this a repeatable course? ☐ Yes ☐ No If yes, this course may be taken _____ times. Will the course be repeated within the same semester/term? ☐ Yes ☐ No

7. Has this course been taught as a 489/689? ☐ Yes ☐ No If yes, how many times? ______ Indicate the number of students enrolled for each academic period it was taught.

8. This course will be:
 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)

 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)

 B.B.A. in Accounting, Finance, Information and Operations Management, Management, and Marketing; B.S. in Agribusiness.

9. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.

10. Prefix Course # Title (exclude punctuation) MKTG 484 MARKETING INTERNSHIP

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>Subject Matter Content Code</th>
<th>Admin. Unit</th>
<th>Acad. Year</th>
<th>FICE Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>300</td>
<td>521</td>
<td>3</td>
<td>07</td>
<td>03632</td>
</tr>
</tbody>
</table>

Do not complete shaded area.

Approval recommended by:

Head of Department ____________________________ Date 12-12-06

Chair, College Review Committee ____________________________ Date 12/12/06

Dean of College ____________________________ Date 12/12/06

Submitted to Coordinating Board by:

Dean of College ____________________________ Date

Director of Academic Support Services ____________________________ Date

To have this form reviewed, please send to Linda F. Lacey, Mail Stop 1265 or fax to 847-8737.

OAR/AS-5/04

19 of 30 C
Marketing 484: Internship
Summer 2007
Syllabus (Tentative)

Instructor: Dr. Stephen W. McDaniel
Office: 201G Wehner
Office hours: MWF 9:00 – 11:00
e-mail: s-mcdaniel@tamu.edu
Phone: (979) 845-5801

Course Objectives:
To positively complement a student’s internship experience through supplemental learning, readings and assignments. The directed readings and assignments will allow students the opportunity to reflect on their work experience, engage with supervisors, and apply academic theory to the real world experience. Students should complete the internship and directed studies course with a refined, professional skill set to use and build upon in the work place.

Prerequisites: MKTG 321; Junior or Senior classification; permission of instructor

Required Text: Discovering the Soul of Service by Leonard L. Berry. The Free Press 1999. ISBN#0-684-84511-3 Chapters:
TBA

Internship Requirements:
I. Duration: Internships must be no less than 8 weeks and 300 hours in duration.
II. Job Assignment: No more than 25% of job duties will be clerical or otherwise not related to the development of professional work skills.

Course Requirements:
I. Documentation:
 a. Obtain offer letter from employer indicating that the student has been offered an internship position. Letter must be on employer letterhead and provide a basic job description of the program or training students will complete.

II. Pre-internship work:
 a. Deadline: Internship documentation will be reviewed for eligibility beginning March 1.
 Deadline to submit documentation is May 1.
b. Pre-internship meeting – students must meet with the MKTG 484 instructor to review his or her internship eligibility. ** Students will be enrolled in the MKTG 484 course after attendance at the required pre-internship meeting.

III. Internship coursework: COURSE ASSIGNMENTS
a. On-line test. Students will be tested on the courses required reading material on-line by June 8.

b. Goals and Action Plan: Students in collaboration with their company supervisor will complete a Goals & Action Plan outlining the internships learning objectives and specific, measurable goals for success. Due June 20.

c. Executive Interviews. Students will conduct FOUR interviews on topics related to the required readings with supervisors, managers, executives or customers. Students will submit a two-page, single-spaced report on the interview.

d. Internship Summary: Students will complete a three-page, single spaced review of their internship experience. This document will be filed and used as reference material by future students considering internships. Due August 24.

Grading Policy:
MKTG 484 will record a letter grade; it is not a pass/fail course.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goals and Action Plan</td>
<td>10%</td>
</tr>
<tr>
<td>On-line test on readings</td>
<td>20%</td>
</tr>
<tr>
<td>Four Interviews</td>
<td>40% (10% per assignment)</td>
</tr>
<tr>
<td>Employer Evaluation</td>
<td>20%</td>
</tr>
<tr>
<td>Internship Summary</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Late Assignments:
A penalty of 1 letter grade will be assessed to each assignment for every 3 days turned in after the due date, unless the late assignment is due to a university excused absence or the student has obtained prior Instructor approval.

Example: Goals & Action Plan
Due: June 20 at 5:00 pm
Turned in after 5:00 pm on June 23 will earn no higher than a B;
Turned in after 5:00 pm on June 26 will earn no higher than a C; etc. (Unless this is because of a university excused absence or the student has obtained prior Instructor approval.)
Assignment Due Dates:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-internship meeting</td>
<td>April 25 & April 26, 2007 - 3:00 pm</td>
</tr>
<tr>
<td>Internship documentation</td>
<td>May 1</td>
</tr>
<tr>
<td>On-line readings test</td>
<td>June 8 (test will be available June 4-8)</td>
</tr>
<tr>
<td>Goals & Action Plan</td>
<td>June 20</td>
</tr>
<tr>
<td>Interview 1</td>
<td>June 29</td>
</tr>
<tr>
<td>Interview 2</td>
<td>July 16</td>
</tr>
<tr>
<td>Interview 3</td>
<td>July 30</td>
</tr>
<tr>
<td>Interview 4</td>
<td>August 13</td>
</tr>
<tr>
<td>Employer Evaluation</td>
<td>August 24</td>
</tr>
<tr>
<td>Course Summary</td>
<td>August 24</td>
</tr>
</tbody>
</table>

Pending extenuating circumstances and instructor approval, an incomplete grade ("I") will be given for coursework deficiency and not for performance deficiency. Texas A&M's regulations state:

A temporary grade of "I" (Incomplete) at the end of a semester or summer term indicates that the student (graduate or undergraduate) has completed the course with the exception of a major quiz, final examination, or other work. The instructor shall give this grade only when the deficiency is due to an authorized absence or other cause beyond the control of the student.

Scholastic Dishonesty:
(see Student Rules for further details)

The Aggie Honor Code

"An Aggie Does Not Lie, Cheat or Steal Or Tolerate Those Who Do"

Website for Honor Council Rules and Procedures is http://www.tamu.edu/aggiehonor

Scholastic dishonesty WILL NOT BE TOLERATED. All policies concerning scholastic dishonesty found in the current Texas A&M University Regulations apply and will be enforced. Specifically, a test grade of zero will be assigned for the first infraction. Repeat offenses will result in a failing grade for the course and a letter to the student’s file.

ADA Statement:

Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities in Room B118 of the Cain Hall, or call 845-1637. Please also contact your MKTG485 instructor by May 15th.
November 13, 2006

Memorandum
To: Dr. Robert Knight
 Chair of University Curriculum Committee

Through: Dr. Mark Weichold
 Dean of Undergraduate Programs and Associate Provost for Academic Services

Through: Dr. Karon Mathews
 Executive Director, Student Learning Center

From: Dr. Joel V. McGee
 Director

RE: Course prefix change request

During August of 2006, the Center for Academic Enhancement changed names to the Student Learning Center to better reflect our mission and in conjunction with our move to Hotard Hall. As part of the name change process, we would like to change the course prefix of all of our courses as outlined below.

<table>
<thead>
<tr>
<th>Current Course:</th>
<th>New Course:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAEX 001</td>
<td>SLCX 001</td>
</tr>
<tr>
<td>CAEX 002</td>
<td>SLCX 002</td>
</tr>
<tr>
<td>CAEX 003</td>
<td>SLCX 003</td>
</tr>
<tr>
<td>CAEN 001</td>
<td>STLC 001</td>
</tr>
<tr>
<td>CAEN 002</td>
<td>STLC 002</td>
</tr>
<tr>
<td>CAEN 003</td>
<td>STLC 003</td>
</tr>
<tr>
<td>CAEN 101</td>
<td>STLC 101</td>
</tr>
<tr>
<td>CAEN 102</td>
<td>STLC 102</td>
</tr>
<tr>
<td>CAEN 289</td>
<td>STLC 289</td>
</tr>
</tbody>
</table>
November 20, 2006

MEMORANDUM

TO: Linda Lacey
 Director of Academic Support Services

THROUGH: Dr. Jo Howze
 Associate Dean of Engineering

FROM: Brett A. Peters
 Department Head

SUBJECT: Changing Undergraduate Course Prefix from INEN to ISEN

This is to request that all undergraduate courses (see attached) within the Industrial and Systems Engineering Department have their prefix changed from INEN to ISEN. The reason for the change is so that our course prefix will reflect the new departmental name that became effective at the start of the Fall 2005 Semester.
Department of Industrial and Systems Engineering

Industrial Engineering (ISEN)

101. Introduction to Industrial Engineering (1-0). Credit 1. Introduction to industrial engineering; overview of the curriculum; presentations by faculty and industry to familiarize students with the department and the scope of industrial engineering applications.

220. Introduction to Production Systems (3-0). Credit 3. I, II. Introduction to manufacturing and production systems; provides an overview of various aspects of manufacturing systems; includes design, analysis, operation, and control; a perspective for manufacturing systems related problems and the complex interactions that they entail. Prerequisites: CPSC 206; ENTC 200; STAT 211 or registration therein.

285. Directed Studies. Credit 1 to 4. I, II, S. Problems of limited scope in industrial engineering approved on an individual basis intended to promote independent study. Prerequisite: Approval of department head.

302. Economic Analysis of Engineering Projects (2-0). Credit 2. I, II, S. Principles of economic equivalence; time value of money; analysis of single and multiple investments; comparison of alternatives; capital recovery and after-tax analysis of economic projects. Prerequisite: MATH 152.

303. Engineering Economic Analysis (3-0). Credit 3. I, II, S. Principles of economic equivalence; time value of money; analysis of single and multiple investments; comparison of alternatives; capital recovery and tax implications; certainty; uncertainty; risk analysis; public sector analysis and break-even concepts. Prerequisite: MATH 152.

314. Statistical Control of Quality (2-3). Credit 3. I, II. Quality control with statistical principles applied to problems in various production systems, including probability concepts, density and distribution functions, control chart concepts and sampling inspection plans; laboratory exercises for exposure to basic metrology and applied statistics for quality control applications in discrete-item manufacturing systems. Prerequisites: STAT 212.

315. Production Systems Planning (3-0). Credit 3. I, II. Principles, models and techniques for planning, analysis and design of integrated production systems; optimization principles, including linear programming, unconstrained and equality constrained optimization and dynamic programming applied to production planning; topics to include capacity expansion models, learning curves, aggregate planning models, deterministic and stochastic inventory, MRP and project scheduling. Prerequisites: INEN 220; MATH 304.

Corequisite: INEN 420.

316. Production Systems Operations (3-0). Credit 3. I, II. Analytical principles of manufacturing systems design, analysis and control; emphasis placed on stochastic analysis; role of variability and impact on cycle time; push versus pull production strategies including Kanban and constant wip control; probability, queuing theory, Little's Law, heavy traffic approximations, and queuing networks. Prerequisites: INEN 220, MATH 304; STAT 212.

333. Project Management for Engineers (3-0). Credit 3. Basic project management for engineering undergraduates; project development and economic justification; estimating; scheduling; network methods; critical path analysis; earned value management; recycling and rework; project organizational structures; project risk assessment; resource allocation; ethics; characteristics of project managers. Prerequisite: Junior or senior classification in Dwight Look College of Engineering. Cross-listed with CIVEN 333 and MIEEN 333.

411. Engineering Management Techniques (3-0). Credit 3. Techniques related to managing engineering activities; engineer's transition into management; engineering managerial functions; motivation of individual and group behavior; productivity assessment/improvement; managing the quality function and communications. Prerequisite: Senior classification in industrial engineering.

414. Total Quality Engineering (2-3). Credit 3. Introduction to the principles of total quality engineering; total quality management philosophy; engineering approaches for designing quality into products and processes; off-line experimentation methods for the robust design; emphasis on teamwork and continuous quality improvement. Prerequisite: INEN 314.
Course Descriptions/Information and Operations Management

416. Facilities Location, Layout and Material Handling. (3-3). Credit 4. I, II Analytical treatment of facilities location, physical layout, material flow and handling, combined with heuristic algorithms to assist in the design of production/service facilities; fundamental concepts applied through a sequence of design projects. Prerequisites: INEN 315; INEN 316 or registration therein.

421. Operations Research II. (3-0). Credit 3. Development and application of probabilistic analytical methods including Markov chains, queuing systems and digital simulation modeling. Prerequisites: MATH 304 or equivalent; STAT 212.

424. Systems Simulation. (2-3). Credit 3. I, II Systems simulation structure, logic and methodologies; generation of random numbers and deviates; system simulation languages, models and analysis; applications to industrial situations. Prerequisite: INEN 316.

425. Design and Analysis of Industrial Systems with Simulation. (2-3). Credit 3. In-depth study into the design-modeling and subsequent analysis of contemporary production/service systems; factory/service systems are modeled using the ARENA/SIMAN V simulation-animation language; emphasis is placed on the critical analysis of alternative flow designs of modeled systems using flow and economic parameters to assess system improvement. Prerequisites: INEN 303 and 424.

430. Human Factors and Ergonomics. (3-0). Credit 3. II Human biological, ergonomic, and psychological capabilities and limitations; techniques and procedures for developing and applying the principles of human factors engineering to systems design; stresses interdisciplinary nature of the subject. Prerequisite: Approval of instructor.

453. Principles of Programmable Automation. (2-3). Credit 3. Comprehensive treatment of the principles of computer numerical control, direct numerical control, computer-aided part programming and industrial robots; emphasis on the operations and applications of CNC, DNC machine tools and industrial robots; laboratory experience in using part-programmable software and robotic programming languages to develop programmable automation systems. Prerequisites: INEN 316; INEN 416 or registration therein.

459. Manufacturing Systems Design. (1-6). Credit 3. I, II Capstone design course emphasizing analysis and design of manufacturing systems, cellular design, flexible manufacturing systems and manufacturing integration; integrates knowledge gained from all required industrial engineering courses in a system design project; for students in their final semester of undergraduate studies. Prerequisites: INEN 314, 416, 424.

489. Special Topics in... Credit 1 to 5. In-depth study of areas of current student interest and recent advances; normally used for first time offering of new courses. Prerequisite: Approval of instructor.

Department of Information and Operations Management

Information and Operations Management (INBE)

209. Business Information Systems Concepts. (3-0). Credit 3. I, II Introduction to the use of computers in data and document management and ad problem-solving tool for business; fundamental concepts of information technology and theory; opportunities to use existing application software to solve various business information systems oriented problems. May not be used to satisfy degree requirements for majors in business. Prerequisite: For students other than business and agribusiness majors.

Texas A&M University

Departmental Request for a Change in Course
Undergraduate • Graduate • Professional

1. This request is submitted by the Department of Electrical and Computer Engineering.

2. Course prefix, number and complete title of course: ELEN 248 - Introduction to Digital Design

3. Change requested:
 a) Prerequisite(s): From ELEN 214 or equivalent, or registration therein. To Admission to Upper Division Level.
 b) Withdrawal (reason)
 c) Cross-list with
 d) Change in course title and description. Enter complete current course title and current course description; complete proposed course title and proposed course description in items 4 and 5.
 e) Change in credit/contact hours. Complete item 6b. Underscore change(s). Attach a course syllabus.

4. Complete current course title and current course description: Introduction to Digital Design - Combinational and sequential digital system design techniques; design of practical digital systems.

5. Complete proposed course title and proposed course description (not to exceed 50 words):

6. a) As currently in course inventory:
Prefix	Course #	Title (exclude punctuation)
 ELEN | 248 INTRO TO DGTL SYM DSGN |
 Lect. | Lab | SCH | Subject Matter Content Code | Admin. Unit | FICE Code |
 030304 | |
 Do not complete shaded area.

 b) Changed to:
Prefix	Course #	Title (exclude punctuation)
 Lect. | Lab | SCH | Subject Matter Content Code | Admin. Unit | Acad. Year | FICE Code |
 003632 |
 Level

Approval recommended by:

[Signature]

Head of Department Date

Chair College Review Committee Date

Head of Department (if cross-listed course) Date

Dean of College Date

Submitted to Coordinating Board by:

Dean of College Date

Director of Academic Support Services Date
Course Objective

The goal of this course is to provide the student with a working knowledge of different methods for logic representation, manipulation, and optimization, for both combinational and sequential logic.

At the end of the course the student should be able to view the design of digital systems from a new perspective and have an understanding of several fundamental concepts that can be applied to a wide variety of digital design problems.

Course Prerequisite

Admittance into Upper Division

Course Outline

Topics to be covered in this course:
- Logic gates and Boolean Algebra
- Combinational Logic
- Arithmetic Circuits and common MSI Logic Circuits
- Latches, Flip-flops, Registers and Counters
- NMOS and CMOS based Logic Gates

Here is a tentative day-by-day breakdown of the material to be covered in this course in pdf format.

Here is the reading assignment list for the course in pdf format.
Important Logistical Issues

As I indicated in the first week of class, you are responsible to read this page and familiarize yourself with the important logistical information on it.

Please remember that email will be used as an official means of communicating class information to you. You should make sure that the email address that you gave me on the first day of class is a current and functioning address. In case of any changes in your email address, please let me know ASAP.

Remember that plagiarism will not be tolerated and will be dealt with under the Aggie Honor System Office guidelines.

Homework, Exams, and Grading

25% Homework assignments.
15% Laboratory.
30% 2 Mid-term exams.
30% Final exam.

Homework will be assigned often and in general you will have one week to do the assignment. The due date for each homework will be indicated. A homework turned in one week late will be penalized 50%, except in the case of an excused absence. Homework turned in later than a week will receive no credit. You are welcome to work together on homework, but you should not turn in identical solutions, or one solution for multiple students. I will drop the score of your lowest homework while computing your final grade.

Homework will be graded by our class grader, mid-term exams and finals will be graded by instructor.

As discussed on the first day of class, mid-term exams will be held outside class hours and will be 2 hours in duration. The second mid-term will be conducted and graded before Nov 3 (the Q-drop date). All exams (MT1, MT2 and the final) will be closed book. You may bring a single cheat-sheet (you may use both sides of this sheet). The final exam will be cumulative, while MT1 and MT2 will not be cumulative.

MT1 will be held on Mon Sept 25, from 7pm to 9pm, location TBA. I will hold a review session during the weekend before the exam.

MT2 will be held on Mon Oct 30, from 7pm to 9pm, location TBA. I will hold a review session during the weekend before the exam.

The final will be held on Dec 13, from 1pm to 3pm, location TBA. I will hold review sessions before the final, date/time/place TBA.

As I had mentioned, EE248 will have a helpdesk. This will be staffed by students who can help you with the course material. The helpdesk hours will be conducted outside the EAPO office in Zachry (there are several open desks in this area). The peer teachers will have a sign nearby, indicating the location of the helpdesk for 248. The hours and location of this helpdesk are:

M 8am-10am
T 8am-11am
Lab Resources

Note: More detailed information for your particular laboratory section will be made available by your lab TA. I am just posting the link to the lab website below

Lab website is here

Americans with Disabilities Act (ADA) Policy Statement
The Americans with Disabilities Act (ADA) is a federal antidiscrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities in Room B118 of Cain Hall or call 845-1637.

Academic Integrity Statement
All syllabi shall contain a section that states the Aggie Honor Code and refers the student to the Honor Council Rules and Procedures on the web.

Aggie Honor Code
“An Aggie does not lie, cheat, or steal or tolerate those who do.”
Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the Texas A&M University community from the requirements or the processes of the Honor System. For additional information please visit:
www.tamu.edu/aggiehonor/

Sunil P Khatri / Texas A&M University /