GRADUATE COUNCIL
1 February 2007

Course Change Requests

Credit Hours

C602 CPSY 630 Foundations of Counseling

FROM: (3-0) Credit 3

TO: (4-0) Credit 4

Title, Prerequisite, Course Description

C603 MATH 611 Ordinary Differential Equations

FROM: ORD DIFF EQ

TO: INTRO ORD & PART DIFF EQ

FROM: MATH 601 or equivalent

TO: MATH 410 or equivalent or instructor’s approval

FROM: General methods for first order equations, singular solutions, applications, special
methods, linear equations of second order, method of successive approximations, systems of
ordinary equations.

TO: Basic theory of ordinary differential equations; existence and uniqueness, dependence
on parameters, phase portraits, vector fields. Partial differential equations of first order, method
of characteristics. Basic linear partial differential equations: Laplace equation, heat (diffusion)
equation, wave equation and transport equation. Solution techniques and qualitative properties.

Prerequisite and Description Change

C604 MATH 612 Partial Differential Equations

FROM: MATH 611 or equivalent

TO: MATH 611 and MATH 607 or 641, or approval of instructor

FROM: General solution of first order equations, second order equations from physics and
mechanics.
GRADUATE COUNCIL
1 February 2007

Texas A&M University

Request for a Change in Course

Undergraduate Graduate Professional
Submit original form and 2 copies.

1. This course is submitted by the Department of EDUCATIONAL PSYCHOLOGY

2. Course prefix, number and complete title of course: CPSY 630 - FOUNDATIONS OF COUNSELING

3. Change requested:
a) Prerequisite(s): From ______________________________________ To ______________________________________
b) Withdrawal (reason) ______________________________________
c) Cross-list with ______________________________________
 Cross-listed courses require the signatures of both department heads.
d) Change in course title and description. Enter complete current course title and current course description; complete proposed course title and proposed course description in items 4 and 5.
ed) Change in credit/contact hours. Complete item 6b. Underscore change(s). Attach a course syllabus.*

4. Complete current course title and course description: ______________________________________

5. Complete proposed course title and course description (not to exceed 50 words):

6. a) As currently in course inventory:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Course #</th>
<th>Title (exclude punctuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPSY</td>
<td>630</td>
<td>FOUNDATIONS OF COUNSELING</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>SCH</th>
<th>Subject Matter Content Code</th>
<th>Admin. Unit</th>
<th>FICE Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>0</td>
<td>03</td>
<td>42060100010010920010366</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do not complete shaded area

b) Changed to:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Course #</th>
<th>Title (exclude punctuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPSY</td>
<td>630</td>
<td>FOUNDATIONS OF COUNSELING</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>SCH</th>
<th>Subject Matter Content Code</th>
<th>Admin. Unit</th>
<th>Academic Year</th>
<th>FICE Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>0</td>
<td>04</td>
<td>420601001409200708010366</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approval recommended by:

Head of Department
Date

Chair, College Review Committee
Date

Dean of College
Date

Submitted to Coordinating Board by:

Date

Director of Academic Support Services
Date
CPSY 630
 Foundations of counseling

Donna Davenport
845-0285 (office)
845-1831 (sec.)
ddavenport@coe.tamu.edu

Office hours: Mon 1:30-3
Tues: 11-12

Prerequisites: Approval of instructor and department head.

Required Readings:
Handouts

Overview of the Course:

This course provides an extensive study of selected contemporary approaches to
counseling and psychotherapy. The goals of the course are to assist the student in (a) gaining
knowledge of the theories discussed in class—their assumptions, implications, and techniques, (b)
exploring in depth a selected theory, by means of approved readings and the writing of a paper,
and (c) enhancing the development of the student’s own theory of personality/counseling.
Additionally, students are expected to become familiar with the ACA code of ethics and be able to
apply the code to specific situations.

Course Requirements:

1. Participation in a seminar designed to facilitate learning through lecture, didactic
dialogue, reading, and experience. Each student is expected to complete all assignments in a
timely manner so that he/she can function as a contributor and resource in the seminar.
2. After completion of approved reading(s), the preparation of a paper dealing with an
individually selected theory of counseling. The paper will apply the theory to an assigned case
description.
3. Ethics exam on ACA code of ethics
4. Final exam.

Evaluation:

Class participation--20 points
Paper--30 points
Ethics exam--10 points
Final exam--40 points

Copyright/Plagiarism
The handouts used in this course are copyrighted. By “handouts,” I mean all materials generated
for this class, which include but are not limited to self-assessments, exams, lab problems, in-class
materials, review sheets, and additional problem sets. Because these materials are copyrighted,
you do not have the right to copy them, unless I expressly grant permission.

As commonly defined, plagiarism consists of passing off as one’s own the ideas, words, writings,
etc., which belong to another. In accordance with this definition, you are committing plagiarism if
you copy the work of another person and turn it in as your own, even if you should have the
permission of that person. Plagiarism is one of the worst academic sins, for the plagiarist destroys
the trust among colleagues without which research cannot be safely communicated. If you have
any questions regarding plagiarism, please consult the latest issue of the Texas A&M University
AMERICANS WITH DISABILITIES ACT

ADA Statement: The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Disability Services in Room B118 of Cain Hall, or call 845-1637. Helpful information is located at http://disability.tamu.edu

Calendar of Classes

Aug 31 - Overview
Sept. 7—Psychoanalysis, self-psych; object relations T, R, &H—chpt 3
Sept. 14 Jungian/Adlerian T, R, &H—chpt 11, 13
Sept. 21—Transactional Analysis T, R, &H—chpt 10
Sept 28–Existential Psychotherapy handouts
Oct. 5—Person-Centered; Cultural/Relational T, R, &H—chpt 6
Oct. 12– Gestalt T, R, &H—chpt 7
Oct. 19–Review
Oct. 26—Ego-State; Self-Relations Handouts
Nov. 2—Behavior Therapy T, R, &H—chpt 9
Nov. 9—Reality Therapy/Solution-focused T, R, &H, chpt 4, 5
Nov. 16—Cognitive Therapy T, R, &H— chpt 8
Nov. 23—Provocative, Strategic Therapy, Multimodal handouts
Nov. 30—Review/Integration
Texas A&M University
Artmental Request for a Change in Course
Undergraduate • Graduate • Professional
• Submit original form and 2 copies •

1. This request is submitted by the Department of Mathematics

2. Course prefix, number and complete title of course: MATH 611 Ordinary Differential Equations

3. Change requested:
 a) Prerequisite(s): From MATH 601 or equivalent To MATH 410 or equivalent or instructor's approval
 b) Withdrawal (reason)
 c) Cross-list with
 Cross-listed courses require the signatures of both department heads.
 d) Change in course title and description. Enter complete current course title and current course description;
 complete proposed course title and proposed course description in items 4 and 5.
 e) Change in credit/contact hours. Complete item 6b. Underline change(s). Attach a course syllabus.

4. Complete current course title and current course description: MATH 611 Ordinary Differential Equations:
 General methods for first order equations, singular solutions, applications, special methods, linear equations of second order, method of successive approximations, systems of ordinary equations.

5. Complete proposed course title and proposed course description (not to exceed 50 words) MATH 611 Introduction to Ordinary and Partial Differential Equations: Basic theory of ordinary differential equations, existence and uniqueness, dependence on parameters, phase portraits, vector fields, Partial differential equations of first order, method of characteristics.

6. a) As currently in course inventory:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Course #</th>
<th>Title (exclude punctuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH</td>
<td>6110</td>
<td>D I F F E R E N T I A L E Q U A T I O N S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>SCH</th>
<th>Subject Matter Content Code</th>
<th>Admin. Unit</th>
<th>FICE Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>300030</td>
<td></td>
<td></td>
<td>Do not complete shaded area.</td>
<td>003632</td>
<td>Level</td>
</tr>
</tbody>
</table>

b) Changed to:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Course #</th>
<th>Title (exclude punctuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH</td>
<td>6111</td>
<td>P A R T I A L D I F F E R E N T I A L E Q U A T I O N S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>SCH</th>
<th>Subject Matter Content Code</th>
<th>Admin. Unit</th>
<th>FICE Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>300030</td>
<td></td>
<td></td>
<td>Do not complete shaded area.</td>
<td>003632</td>
<td>Level</td>
</tr>
</tbody>
</table>

Approval recommended by:

Head of Department Date
Head of Department (if cross-listed course) Date
Submitted to Coordinating Board by: Date
Director of Academic Support Services Date
Effective Date

To have this form reviewed, please send to Linda F. Lacey, Mail Stop 1265 or fax to 847-8737.
OAR/AS-504
Basic linear partial differential equations: Laplace equation, heat (diffusion) equation, wave equation and transport equation. Solution techniques and qualitative properties.
(Sample) Syllabus of Math 611, Section 600

Introduction to Ordinary and Partial Differential Equations

Instructor

Office Rm.

Telephone

E-mail:

Home Page......................

- Section: 600
- Time:
- Room:

- Office hours:
 Additional office hours can be arranged by appointment.

Introduction

The class starts with a brief excursion into basic facts concerning Ordinary Differential Equations: existence and uniqueness, dependence on parameters, phase portraits, vector fields, and then shifts to the Partial Differential Equations. Then it shifts to solution techniques and qualitative properties. Of basic partial differential equations, covering: equations of first order and method of characteristics; main linear partial differential equations - Laplace equation, heat (diffusion) equation, wave equation, and transport equation.

Besides numerous applications inside mathematics (e.g., to geometry), the PDEs form the core part of our scientific understanding of the physical world: from physics to chemistry, to biology, to meteorology, you name it.

The class (except the short initial ODE part) will be based on the well respected recent textbook by L. Evans. It is planned to cover Part I "Representation formulas for solutions" of the book. This includes a study of the four major PDEs: transport, Laplace,
heat, and wave equations. Analysis of 1st order non-linear PDEs, and other methods of representing solutions (Fourier transform, separation of variables, asymptotics, etc.).

This study will be continued in the next class Math 612 that will cover the Part II of the book "Theory of linear PDEs" (including boundary value problems, spectral theory, etc.).

Prerequisite:

This is a beginning level graduate course. Prerequisite: MATH 410 or equivalent, or instructor's approval

(Sample) Assignments

Grading will be based on home assignments and a take-home final exam.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics and sections</th>
<th>Home assignments and recommended exercises</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A survey of main theorems on ODEs</td>
<td>HW1</td>
<td>n/a</td>
</tr>
<tr>
<td>2, 3</td>
<td>Chapter 1 and Sections 2.1, 2.2 of Chapter 2</td>
<td>HW2 A sample: solve problems ## 1, 2, 4, 5, and 9 in section 2.5.</td>
<td>n/a</td>
</tr>
<tr>
<td>4 - 7</td>
<td>Chapter 2, Sections 2.3, 2.4</td>
<td>HW3</td>
<td>n/a</td>
</tr>
<tr>
<td>8, 9</td>
<td>Chapter 3</td>
<td>HW4</td>
<td>n/a</td>
</tr>
<tr>
<td>10 - 13</td>
<td>Chapter 4</td>
<td>HW5</td>
<td>Final exam</td>
</tr>
</tbody>
</table>

GRADING POLICY

<table>
<thead>
<tr>
<th>Percentage of points</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% and higher</td>
<td>A</td>
</tr>
<tr>
<td>80% and higher</td>
<td>B</td>
</tr>
<tr>
<td>70% and higher</td>
<td>C</td>
</tr>
<tr>
<td>60% and higher</td>
<td>D</td>
</tr>
<tr>
<td>Less than 60%</td>
<td>F</td>
</tr>
</tbody>
</table>

Recommended additional reading:

All of the books below are written by great experts in differential equations, all are written well and provide interesting and rewarding reading. This list is certainly far from being comprehensive, it just contains some of the instructor's favorites. These books
approach the subject from different perspectives, and so reading (or at least browsing through) all of them is a good idea for someone who wants to learn the ODEs and PDEs. Do not try to do this in one semester, though :-).

Ordinary Differential Equations

- V. I. Arnold, Ordinary Differential Equations (any edition). A wonderful book that provides a contemporary geometric view of all the main issues of ODEs. Requires a lot of work, but the reader gets rewarded for it with joy and much deeper knowledge. Probably not suitable as the first ODE book.
- V. I. Arnold, Geometric Methods in the Theory of Ordinary Differential Equations, Springer Verlag. Can be considered as extension of the previous book to cover important topics usually not in the standard ODE class.
- L. S. Pontrjagin, Ordinary Differential Equations Reading, Massachusetts: Addison - Wesley Publishing. A short and easy textbook that covers introduction to ODEs with main theorems proven.

Partial Differential Equations

- Richard Courant and David Hilbert, Methods of Mathematical Physics, two volume set (any edition). This is an absolutely wonderful classics. In spite of being half of a century old, it is still a very important book, in many instances not surpassed by anything else. A must reading for anyone using PDEs extensively.
- Fritz John, Partial Differential Equations, Springer Verlag. Although out dated and more limited that Evans' book, this is still a good introduction to the mathematics of PDEs.
- Michael E. Taylor, Partial Differential Equations: Basic Theory (Texts in Applied Mathematics, 23), Springer Verlag, and its two consecutive volumes. A comprehensive set of books covering all major topics of PDEs from contemporary points of view. Very geometric, in most cases equations are considered on manifolds. This makes it a very good and important book, but probably not for the first serious study of PDEs.

Make-up policy:

Make-ups for missed home assignments and exams will only be allowed for a university approved excuse in writing. Wherever possible, students should inform the instructor before an exam or quiz is missed. Consistent with University Student Rules, students are
required to notify an instructor by the end of the next working day after missing an exam or quiz. Otherwise, they forfeit their rights to a make-up.

Grade complaints:

Sometimes the instructor might make a mistake grading your work. If you feel that this has happened, you have one week since the graded work was handed back to you to talk to the instructor. If a mistake is confirmed, the grade will be changed. No complaints after that deadline will be considered.

Academic integrity:

Copying work done by others, either in-class or out of class, is an act of scholastic dishonesty and will be prosecuted to the full extent allowed by University policy. Collaboration on assignments, either in-class or out-of-class, is forbidden unless permission to do so is granted by your instructor. For more information on university policies regarding scholastic dishonesty, see [University Student Rules](#).

Aggie Honor Code

"An Aggie does not lie, cheat, or steal or tolerate those who do."

Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the Texas A&M University community from the requirements or the processes of the Honor System. For additional information please visit: www.tamu.edu/aggiehonor/

On all course work, assignments, and examinations at Texas A&M University, the following Honor Pledge shall be preprinted and signed by the student:

"On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work."

Students with Disabilities:

The Americans with Disabilities Act (ADA) is a federal antidiscrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities in Room B118 of Cain Hall or call 845-1637.
Copyright policy:

All printed materials disseminated in class or on the web are protected by Copyright laws. One xerox copy (or download from the web) is allowed for personal use. Multiple copies or sale of any of these materials is strictly prohibited.

GOOD LUCK IN YOUR STUDIES
Texas A&M University

Departmental Request for a Change in Course
Undergraduate • Graduate • Professional

1. This request is submitted by the Department of Mathematics

2. Course prefix, number and complete title of course: MATH 612 Partial Differential Equations

3. Change requested:
 a) Prerequisite(s): From MATH 611 or equivalent To MATH 611 and MATH 607 or 641, or approval of instructor
 b) Withdrawal (reason)
 c) Cross-list with
 Cross-listed courses require the signatures of both department heads.
 d) Change in course title and description. Enter complete current course title and current course description; complete proposed course title and proposed course description in items 4 and 5.
 e) Change in credit/contact hours. Complete item 6b. Underline change(s). Attach a course syllabus.

5. Complete proposed course title and proposed course description (not to exceed 50 words): MATH 612 Partial Differential Equations: Theory of linear partial differential equations. Sobolev spaces. Elliptic equations (including boundary value problems and spectral theory). Linear evolution equations of parabolic and hyperbolic types (including initial and

6. a) As currently in course inventory: continued on back
 b) Changed to:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Course #</th>
<th>Title (exclude punctuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>SCH</th>
<th>Subject Matter Content Code</th>
<th>Admin. Unit</th>
<th>FICE Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Do not complete shaded area.</td>
<td></td>
<td>0 0 3 6 3 2</td>
</tr>
<tr>
<td>Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approval recommended by:

Head of Department

Date

Chair, College Review Committee

Date

Head of Department (if cross-listed course)

Date

Dean of College

Date

Submitted to Coordinating Board by:

Dean of College

Date

Director of Academic Support Services

Date

Effective Date

To have this form reviewed, please send to Linda F. Lacey, Mail Stop 1265 or fax to 847-8737.
boundary value problems). As time permits, additional topics might be included.
(Sample) Syllabus of Math 612, Section 600

Partial Differential Equations

Instructor

Office Rm.

Telephone

E-mail:

Home Page

- Section: 600
- Time:
- Room:
- Office hours:
 Additional office hours can be arranged by appointment.

Introduction

This class is devoted to the theory of linear partial differential equations. Assuming some initial familiarity of students with PDEs, the following three main topics will be addressed:

1. Sobolev spaces
2. Elliptic equations (including boundary value problems and spectral theory).
3. Linear evolution equations of parabolic and hyperbolic types (including initial and boundary value problems).
4. As time permits, additional topics might be included.

Besides numerous applications inside mathematics, the PDEs form the core part of our scientific understanding of the physical world: from physics to chemistry, to biology, to meteorology, you name it.
The class will be based on the second part "Theory for linear partial differential equations" of the well respected recent textbook by L. Evans.

Prerequisite:

This is a mid-level graduate course. Prerequisite: Math 611 and one of MATH 607/641, or instructor's approval.

Assignments

Grading will be based on home assignments and a take-home final exam.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics and sections</th>
<th>Home assignments and recommended exercises</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3</td>
<td>Sobolev spaces, Ch. 5</td>
<td>HW1</td>
<td>n/a</td>
</tr>
<tr>
<td>4 - 9</td>
<td>Second order elliptic equations, Ch. 6</td>
<td>HW2</td>
<td>n/a</td>
</tr>
<tr>
<td>10 - 13</td>
<td>Linear evolution equations, Ch. 7</td>
<td>HW3</td>
<td>Final exam</td>
</tr>
</tbody>
</table>

GRADING POLICY

<table>
<thead>
<tr>
<th>Percentage of points</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% and higher</td>
<td>A</td>
</tr>
<tr>
<td>80% and higher</td>
<td>B</td>
</tr>
<tr>
<td>70% and higher</td>
<td>C</td>
</tr>
<tr>
<td>60% and higher</td>
<td>D</td>
</tr>
<tr>
<td>Less than 60%</td>
<td>F</td>
</tr>
</tbody>
</table>

Recommended additional reading

Make-up policy:

Make-ups for missed home assignments and exams will only be allowed for a university approved excuse in writing. Wherever possible, students should inform the instructor before an exam or quiz is missed. Consistent with University Student Rules, students are
required to notify an instructor by the end of the next working day after missing an exam or quiz. Otherwise, they forfeit their rights to a make-up.

Grade complaints:

Sometimes the instructor might make a mistake grading your work. If you feel that this has happened, you have one week since the graded work was handed back to you to talk to the instructor. If a mistake is confirmed, the grade will be changed. No complaints after that deadline will be considered.

Academic integrity:

Copying work done by others, either in-class or out of class, is an act of scholastic dishonesty and will be prosecuted to the full extent allowed by University policy. Collaboration on assignments, either in-class or out-of-class, is forbidden unless permission to do so is granted by your instructor. For more information on university policies regarding scholastic dishonesty, see University Student Rules.

Aggie Honor Code

"An Aggie does not lie, cheat, or steal or tolerate those who do."

Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the Texas A&M University community from the requirements or the processes of the Honor System. For additional information please visit: www.tamu.edu/aggiehonor/

On all course work, assignments, and examinations at Texas A&M University, the following Honor Pledge shall be preprinted and signed by the student:

"On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work."

Students with Disabilities:

The Americans with Disabilities Act (ADA) is a federal antidiscrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities in Room B118 of Cain Hall or call 845-1637.
Copyright policy:

All printed materials disseminated in class or on the web are protected by Copyright laws. One xerox copy (or download from the web) is allowed for personal use. Multiple copies or sale of any of these materials is strictly prohibited.

GOOD LUCK IN YOUR STUDIES