Texas A&M University
Departmental Request for a Change in Course
Undergraduate • Graduate • Professional
Submit original form and attachments
• AEROSPACE ENGINEERING - Mechanics and Materials

1. This request is submitted by the Department of _______________

2. Course prefix, number and complete title of course: MEMA 612 - Wave Propagation in _______________
 Isotropic and Anisotropic Solids

Attach a brief supporting statement for changes made to items 3a thru 3d, and 5 below.

3. Change requested
 a) Prerequisite(s): From ____________________________ To ____________________________
 b) Withdrawal (reason)
 c) Cross-list with ____________________________
 d) Change in course title and description. Enter complete current course title and current course description; complete proposed course title and proposed course description in items 4 and 5.
 e) Change in credit/contact hours. Complete item 6b. Underscore change(s). Attach a course syllabus.

4. Complete current course title and current course description: Wave Propagation in Isotropic and Anisotropic Solids. Mathematical and experimental methods of studying stress waves with emphasis on anisotropic solids, e.g., fiber-reinforced composite materials; waves in an unbounded medium, in a half-space, in rods; waves in a general anisotropic medium; wave surface, slowness surface, velocity surface, energy velocity and group velocity.

5. Complete proposed course title and proposed course description (not to exceed 50 words): SAME

6. a) As currently in course inventory:

Prefix	Course #	Title (excluding punctuation)
 MEMA | 612 | WAVE PROPAGATION

Lect.	Lab	SCH	Subject Matter Content Code	Admin. Unit	FICE Code
 3000 | 30 | 1402010006 | 010000003632 | | Level 6 |

b) Change to:

Prefix	Course #	Title (excluding punctuation)
 AERO | 612 | WAVE PROPAGATION

Lect.	Lab	SCH	Subject Matter Content Code	Admin. Unit	Acad. Year	FICE Code
 3000 | 30 | 1402010006 | 010000003632 | 08-09 | | Level 6 |

Approval recommended by:

Head of Department ____________________________ Date 10/1/07

N.K. Ahmad ____________________________ Date 10/1/07

Head of Department (if cross-listed course) ____________________________ Date 10/1/07

Chair, College Review Committee ____________________________ Date 10/1/07

Dean of College ____________________________ Date 10/1/07

Submitted to Coordinating Board by:

Dean of College ____________________________ Date 10/1/07

Director of Academic Support Services ____________________________ Date 10/1/07

Questions regarding this form should be directed to Sandra Williams at 845-8836.
OAR/AS – 04/07

1 of 3 B41
MEMA 612 / AERO 612 - WAVE PROPAGATION IN ISOTROPIC AND ANISOTROPIC SOLIDS

Instructor: Vikram K. Kinra, 739 HRBB, 845-1667, kinra@tamu.edu.
Semester/Time/Location: TBA

Course Description: Mathematical and experimental methods of studying stress waves with emphasis on anisotropic solids, e.g., fiber-reinforced composite materials; waves in an unbounded medium, in a half-space, in rods; waves in a general anisotropic medium; wave surface, slowness surface, velocity surface, energy velocity and group velocity. Materials with periodic structures: Brillouin zones, cut-off frequency and dispersion.

Textbooks:
5. Additional references and journals as appropriate.

Prerequisite: AERO 603 or MEMA 601

Course Contents:

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
</tr>
<tr>
<td>Why should we study wave propagation?</td>
</tr>
<tr>
<td>II. Isotropic Solids</td>
</tr>
<tr>
<td>A. Unbounded Media</td>
</tr>
<tr>
<td>Plane Waves</td>
</tr>
<tr>
<td>Cylindrical Waves</td>
</tr>
<tr>
<td>Spherical Waves</td>
</tr>
<tr>
<td>B. Half-Space</td>
</tr>
<tr>
<td>Reflection and Reflection at an interface</td>
</tr>
<tr>
<td>C. Waveguides</td>
</tr>
<tr>
<td>SH waves in a plate</td>
</tr>
<tr>
<td>Lamb waves</td>
</tr>
<tr>
<td>Waves in a circular rod</td>
</tr>
<tr>
<td>(i) Torsional Waves</td>
</tr>
<tr>
<td>(ii) Longitudinal Waves</td>
</tr>
<tr>
<td>(iii) Flexural Waves</td>
</tr>
<tr>
<td>III. Anisotropic Solids</td>
</tr>
<tr>
<td>A. Method of characteristics</td>
</tr>
<tr>
<td>B. Huygen's principle; wave surface, velocity surface and slowness surface; energy and group velocity</td>
</tr>
<tr>
<td>C. Materials with transverse isotrophy (unidirectional fiber-reinforced composite materials)</td>
</tr>
<tr>
<td>D. Reflection and refraction at an isotropic/anisotropic interface</td>
</tr>
<tr>
<td>E. Wave propagation in a medium with a periodic structure: Brillouin zones, cut-off frequency, dispersion, energy velocity</td>
</tr>
<tr>
<td>IV. Experimental Methods (3 Hours)</td>
</tr>
<tr>
<td>Shear Pendulum and Hopkinson Bar</td>
</tr>
<tr>
<td>Kolsky Bar</td>
</tr>
<tr>
<td>Ultrasonics</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Course Evaluation:
- Weekly abstracts of current journal publications: 10%
- Mid-term Examination: 20%
- Final Examination: 25%
- Homework: 20%
- Term Paper, including presentation to the class: 25%
- Total: 100%

Americans with Disabilities Act
The Americans with Disabilities Act (ADA) is a federal antidiscrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities in Room B118 Cain Hall, or call 845-1637.

Copyrights
The handouts used in this course are copyrighted. By "handouts" we mean all materials generated for this class, which include but are not limited to syllabi, lab problems, in-class materials, review sheets, and additional problem sets. Because these materials are copyrighted, you do not have the right to copy the handouts, unless the author expressly grants permission.

Scholastic Integrity
As commonly defined, plagiarism consists of passing off as one's own ideas, work, writings, etc., that belong to another. In accordance with this definition, you are committing plagiarism if you copy the work of another person and turn it in as your own, even if you have the permission of that person. Plagiarism is one of the worst academic sins, for the plagiarist destroys the trust among colleagues without which research cannot be safely communicated. If you have questions regarding plagiarism, please consult the latest issue of the Texas A&M University Student Rules [http://student-rules.tamu.edu/], under the section "Scholastic Dishonesty."