Texas A&M University

Departmental Request for a Change in Course
Undergraduate • Graduate • Professional
• Submit original form and attachments •

1. This request is submitted by the Department of Ecosystem Science and Management

2. Course prefix, number and complete title of course: RLEM 604, Grazing Management and Range Nutrition

3. Change requested
 a. Prerequisite(s): From: To:
 b. Withdrawal (reason):
 c. Cross-list with: [Cross-listed courses require the signature of both department heads.]
 d. Change in course title and description. Enter complete current course title and current course description in item 4; enter proposed course title and proposed course description in item 5.
 e. Change in course number, contact hours (lab & lecture), and semester credit hours. Complete item 6. Attach a course syllabus.

4. Complete current course title and current course description:

5. Complete proposed course title and proposed course description (not to exceed 50 words):

6. a. As currently in course inventory:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Course #</th>
<th>Title (excluding punctuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLEM</td>
<td>604</td>
<td>GRAZING MGMT & RNG NTR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>SCH</th>
<th>CIP and Fund Code</th>
<th>Admin. Unit</th>
<th>FICE Code</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>00</td>
<td>03</td>
<td>00 11060005</td>
<td>084100</td>
<td>3632</td>
<td>6</td>
</tr>
</tbody>
</table>

 b. Change to:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Course #</th>
<th>Title (excluding punctuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM</td>
<td>611</td>
<td>GRAZING MGMT & RNG NUTR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>SCH</th>
<th>CIP and Fund Code</th>
<th>Admin. Unit</th>
<th>Acad. Year</th>
<th>FICE Code</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>00</td>
<td>03</td>
<td>00 11060005</td>
<td>084109</td>
<td>1003632</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

 Approval recommended by: [Signature] 9/7/08

 Head of Department

 Date

 Head of Department (if cross-listed course) Date

 Submitted to Coordinating Board by: [Signature] 9/10/09

 Date

 Effective Date

Questions regarding this form should be directed to Sandra Williams at 845-8201.
Curricular Services – 11/07
Course Overview
I look forward to interacting with you this semester as we explore rangelands and the plants and animals that live on them. We will begin by considering how plants grow and how this impacts animals and how animals impact plants. We will study growth and development at the individual plant level and then move to the community level as we consider how vegetation responds to grazing and fire. Various grazing methods will be considered along with the carrying capacity concept and management of stocking rates. Characteristics of plants that determine forage quality will be related to kinds and classes of herbivores. We will study concepts for nutritional ecology of herbivores such as anatomical, physiological, and metabolic characteristics of herbivores, diet selection, intake, digestion, metabolism, and assimilation of nutrients from grazed forages and supplements. Last, we will outline principles of nutritional management, including supplementation, of grazing animals for maintenance, growth, lactation, and reproduction. The course includes extensive fieldtrips to evaluate different applications of grazing management and range animal nutrition. We will also have a hands-on exercise of developing and evaluating a grazing management plan for a ranch.

Learning Outcomes
1. Describe the processes of plant growth and development that are important to grazing management.
2. Describe concepts and applications for plant community dynamics in response to grazing and fire.
3. Describe concepts for stocking rates and grazing systems on rangelands.
4. Develop and evaluate a grazing plan for a ranch.
5. Evaluate applications of grazing and fire management on rangelands and pasturelands.
6. Identify plant factors that affect forage quality.
7. Identify principles of nutritional ecology of herbivores.
8. Explain the concepts and applications for nutritional management of grazing animals.
9. Develop and evaluate a grazing plan for an actual ranch.

Learning Approach
You will be expected to learn through independent reading, lecture, class discussion, field trips and developing synthesis reports. Your grade in this course will depend upon your regular participation in and completion of all of these activities. You will be expected to read assigned material prior to lecture and come to each class prepared to participate. The course does not have any prerequisites except your willingness to do the assignments on time and to participate in the class. We will focus on principles and concepts and how to apply them to the management of grazing, fire, and rangeland herbivores. All quizzes and assignments will be take-home.

Grading: A 90-100%; B 80-89%; C 70-79%; D 60-69%; F <60%
- 50% Take-home quizzes (Quiz A due at mid-semester; Quiz B due at the end of semester)
- 20% Grazing management plan (Due April 24)
- 20% Field trip report (Due April 10)
- 10% Participation in class discussions

Policy for late work
All exams and reports are to be completed as take-home assignments. Suggested due dates are included, but work will be accepted without penalty until the last day of class.

Text
Classnotes available at Copy Corner at 2307 Texas Avenue South, College Station
Selected references posted on WebCT.
Field Trips
The field trips are an integral part of the course and participation is required.
(3/06) ½-day -- Gene Sollock (Iola); Bermudagrass-Ball clover management (8:00 AM - 12:00 PM)
(3/27-29) 3 days -- Edwards Plateau; six stops evaluating vegetation, livestock, & wildlife mgt.

OFFICE HOURS: I am available to meet with students throughout the week. You are welcome to drop by my office or to contact me to arrange an appointment.

ADA POLICY STATEMENT: The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities, in Cain Hall or call 845-1637.

Academic Integrity Statement
“An Aggie does not lie, cheat, or steal or tolerate those who do.”
As a student at Texas A&M University, it is your duty to know and live by the Aggie Honor Code. For details, please refer to the Honor Council Rules and Procedures on the web at www.tamu.edu/aggiehonor

Plagiarism
Plagiarism consists of passing off as one’s own the ideas, words, writings, etc., which belong to another. You are committing plagiarism if you copy the work of another person and turn it in as your own, even if you should have the permission of that person. Evidence of plagiarism will result in an automatic null mark for the assignment or test. If you have any questions regarding plagiarism, please consult the latest issue of the Texas A&M University Student Rules, under the section “Scholastic Dishonesty.”

Attendance
Attendance policy shall follow Rule 7, which can be found at http://student-rules.tamu.edu/rule7.htm

For any other questions or concerns, please refer to http://student-rules.tamu.edu
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/14</td>
<td>Introduction and overview; developing a model for grazing lands and grazing animals</td>
<td></td>
</tr>
<tr>
<td>1/17</td>
<td>Plant Growth and Development (Articles on Vista)</td>
<td></td>
</tr>
<tr>
<td>1/22</td>
<td>Plant Growth and Development (Class discussions and hands-on study)</td>
<td></td>
</tr>
<tr>
<td>1/24</td>
<td>Theories of Vegetation Dynamics (Vol I pp 1-78)</td>
<td></td>
</tr>
<tr>
<td>1/29</td>
<td>Using The Grazing Manager (Ray Hinnant)</td>
<td></td>
</tr>
<tr>
<td>1/31</td>
<td>Using The Grazing Manager (Ray Hinnant)</td>
<td></td>
</tr>
<tr>
<td>2/5</td>
<td>Determining carrying capacity and managing stocking rates (Vol. I pp 79-123)</td>
<td></td>
</tr>
<tr>
<td>2/7</td>
<td>Grazing methods (Vol. I pp 124-162)</td>
<td></td>
</tr>
<tr>
<td>2/12</td>
<td>Vegetation responses to grazing and fire (Vol. I pp 163-223)</td>
<td></td>
</tr>
<tr>
<td>2/14</td>
<td>Grazing Management for Livestock Production (Vol. I pp 224-261)</td>
<td></td>
</tr>
<tr>
<td>2/19</td>
<td>Grazing management/nutritional applications</td>
<td></td>
</tr>
<tr>
<td>2/21</td>
<td>Theories of vegetation dynamics (Vol. I pp. 4-78) (Dr. Dave Briske)</td>
<td></td>
</tr>
<tr>
<td>2/26</td>
<td>Review, discussion and synthesis</td>
<td></td>
</tr>
<tr>
<td>2/28</td>
<td>(no class) Field trip day off</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>Anatomy of the gastro-intestinal tract of large ungulates (Vol. II pp 4-30)</td>
<td></td>
</tr>
<tr>
<td>3/6</td>
<td>Field trip to Gene Sollock ranch (8:00 AM to noon)</td>
<td></td>
</tr>
<tr>
<td>3/18</td>
<td>Forage characterization and quality (Vol. II pp 31-51)</td>
<td></td>
</tr>
<tr>
<td>3/20</td>
<td>Foraging strategies (Vol. II pp 52-95)</td>
<td></td>
</tr>
<tr>
<td>3/25</td>
<td>Field trip slides and discussion</td>
<td></td>
</tr>
<tr>
<td>3/27</td>
<td>Field Trip: Applications of theory (Fieldtrip will be 3/27-29)</td>
<td></td>
</tr>
<tr>
<td>4/1</td>
<td>Grazing Management Plan (Discussion)</td>
<td></td>
</tr>
<tr>
<td>4/3</td>
<td>Foraging strategies (Vol. II pp 52-95)</td>
<td></td>
</tr>
<tr>
<td>4/8</td>
<td>Supplementation (Vol. II pp 99-148)</td>
<td></td>
</tr>
<tr>
<td>4/10</td>
<td>Supplementation (Vol. II pp 99-148)</td>
<td></td>
</tr>
<tr>
<td>4/17</td>
<td>Plant poisoning (Vol. II pp 149-211)</td>
<td></td>
</tr>
<tr>
<td>4/22</td>
<td>Mineral nutrition (Vol. II pp 212-227)</td>
<td></td>
</tr>
<tr>
<td>4/24</td>
<td>Course Summary: Developing a model of grazing lands and grazing animals</td>
<td></td>
</tr>
</tbody>
</table>
ESSM 611
Table of Contents (Volume I)

Theories of Vegetation Dynamics
Rodriguez, R.M. and M. M. Kothmann. Structure and causes of vegetation change in state and transition model applications ... 4

Stringham, T.K., W.C. Krueger, and D.R. Thomas. Application of non-equilibrium ecology to rangeland riparian zones ... 14

Briske, D. D., S.D. Fuhlendorf, and F.E. Smeins. Vegetation dynamics on rangelands: a critique of the current paradigms ... 22

Illius, A.W. and T.G. O’Connor. On the relevance of nonequilibrium concepts to arid and semiarid grazing systems .. 36

Behnke, R.H. and I. Scoones. Rethinking Range Ecology: Implications for rangeland management in Africa ... 52

The Carrying Capacity Concept

McLeod, S.R. Is the concept of carrying capacity useful in variable environments? 84

Kothmann, M. M. and R.T. Hinnant. A philosophy and tool to facilitate sustainable management .. 98

Harlan, J.R. Generalized curves for gain per head and gain per acre in rates of grazing studies ... 110

Mott, G.O. Grazing pressure and the measurement of pasture production 118

Grazing Management Methods
O’Reagain, P.J. and J.R. Turner. An evaluation of the empirical basis for grazing management recommendations for rangeland in southern Africa.. 124

Düvel, G.H. and J.P.J. Scholtz. The incompatibility of controlled selective grazing systems with farmer’s needs .. 136

Norton, B.E. Spatial management of grazing to enhance both livestock production and resource condition: A scientific argument ... 142

Holechek, J.L., H. gomes, F. Molinar, D. Galt, and R. Valdez. Short-Duration grazing:
The facts in 1999 .. 158

Responses of Rangeland Vegetation to Grazing & Fire
Perevolotsky, A. and N.G. Seligman. Role of grazing in Mediterranean rangeland ecosystems: Inversion of a paradigm... 163

Teague, R. Managing grazing pressure for sustainable rangelands 174

Bond, W. Top-down control of grassy ecosystems ... 177

Trollope, W.S.W. and F. Dondofema. Role of fire, continuous browsing and grazing in controlling bush encroachment in the arid savannas of the Eastern Cape Province in South Africa ... 178

Smit, G.N. The importance of ecosystem dynamics in managing the bush encroachment problem in Southern Africa .. 182

Baron, V.S., E. Mpeumo, A.C. Dick, M.A. Naeth, E.K. Okine, and D.S. Chanasyk. Grazing intensity impacts on pasture carbon and nitrogen flow.. 191

West, N.E. and T.P. Yorks. Vegetation response following wildfire on grazed and ungrazed sagebrush semi-desert... 198

Krueger, W.C. and M.A. Sanderson. (CoChairs) Environmental impacts of livestock on U.S. grazing lands... 208

Grazing Management for Livestock Production
Kothmann, M.M. and R.T. Hinnant. Nutritional management of livestock grazing range and pasture lands .. 223

Young, B.A. Ruminant cold stress: effect on production ... 237

Kilkenny, J.B. Reproductive performance of beef cows ... 244

Knight, J.C., M.M. Kothmann, G.W. Mathis and R.T. Hinnant. Cow-calf production with alternative grazing systems ... 254
Table of Contents (Volume II)

Anatomy
Hofmann, R.R. Anatomy of the Gastro-Intestinal Tract ... 4

Forage Quality
Van Soest Nutritional Quality of Feedstuffs .. 34

Allen, Vivien & Segarra Eduardo Anti-quality components in forage: Overview, significance, and economic impact ... 50

Laca, Emilio A., Shipley, Lisa A., & Reid, Edward D. Structural anti-quality characteristics of range and pasture plants ... 54

Moore, Kenneth J., & Jung, Hans-Joachim G. Lignin and fiber digestion 61

Launchbaugh, K.L., Provenza, F.D., & Pfister, J.A. Herbivore response to anti-quality factors in forages .. 72

Mayland, Henry F., & Shewmaker, Glenn E. Animal health problems caused by silicon and other mineral imbalances ... 82

Campbell, John B. Anti-quality effects of insects feeding on rangeland plants: A review 103

Reed, Jess D. Effects of proanthocyanidins on digestion of fiber in forages 107

Thompson, F.N., Stuedemann, J.A., & Hill, N.S. Anti-quality factors associated with alkaloids in eastern temperature pasture ... 115

Majak, Walter, Hall, John W., & Mcallister, Tim A. Practical measures for reducing risk of alfalfa bloat in cattle .. 131

Majak, Walter Review of toxic glycosides in rangeland and pasture forages 135

Foraging Strategies
Provenza, Frederick D., & Cincotta, Richard P. Foraging as a Self-Organizational Learning Process: Accepting Adaptability at the Expense of Predictability 140

Howery, Larry D., Provenza, Frederick D., Ruyle, George B., & Jordan, Nancy C. How Do Animals Learn if Rangeland Plants are Toxic or Nutritious? .. 164

Early, David M., & Provenza, Frederick D. Food Flavor and Nutritional Characteristics Alter Dynamics of Food Preference in Lambs .. 170
Phy, Timothy S., & Provenza, Frederick D. Eating Barley Too Frequently or in Excess Decreases Lambs’ Preference for Barley but Sodium Bicarbonate and Lasalocid Attenuate the Response ... 171

Ralphs, Michael H., Provenza, Frederick D., Pfister, James A., Graham, David, Duff, Glenn C., & Greathouse Gary Conditioned Food Aversion: From Theory to Practice 172

Duncan, A.J., & Young, S.A. Can goats learn about foods through conditioned food aversions and preferences when multiple food options are simultaneously available? 177

Digestion, Metabolism and Nutrient Requirements
Merchen, N.R. Digestion, Absorption and Excretion in Ruminants................................. 185

Squires, Victor R. Water and Its Functions, Regulation and Comparative Use by Ruminant Livestock... 215

Owens, Fred N., & Zinn, Richard Protein Metabolism of Ruminant Animals 225

Ferrell, C.L. Energy Metabolism.. 248

Fahey Jr., G.C., & Berger L.L. Carbohydrate Nutrition of Ruminants................................. 267

Byers, F.M., & Schelling, G.T. Lipids in Ruminant Nutrition .. 296

Huber, J. Tal Vitamins in Ruminant Nutrition.. 311

Kincaid, Ron Macro Elements for Ruminants.. 324

Miller, J.K., Ramsey, Nancy, & Madsen, F.C. The Trace Elements 340