17. Other Items – from UCC April Meeting

New Course

SPSC 398. Interpretation of Aerial Photographs. (2-3). Credit 3. Identification and evaluation of natural and cultural features on aerial photographs; methods for extracting information concerning land use, vegetative cover, surface and structural features, urban/industrial patterns and archaeological sites. Prerequisites: Any mathematics course and one of the following: AGRO 301, BIOL 113, FRSC 101, GEOG 203, GEOL 101, RENR 205, WFSC 101. Cross-listed with FRSC 398 and GEOG 398.
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional
Submit original form and 25 copies. Attach a course syllabus to each.

1. This request is submitted by the Department of Forest Science
2. Course prefix, number and complete title: SPSC 398 Interpretation of Aerial Photographs

3. Course description (not more than 50 words): Identification and evaluation of natural and cultural features on aerial photographs; methods for extracting information concerning land use, vegetative cover, surface and structural features, urban/industrial patterns and archaeological sites. Prerequisites include the following: MAT 132 and one of the following: AGRO 301, BIOL 113, FRSC 101, GEOG 203, GEOL 101, RENR 205, WFSC 101

4. Prerequisite(s): See above. Cross-listed with FRSC 398, GEOG 398

5. Is this a variable credit course? ☐ Yes ☐ No
 If yes, from _______ to _______

6. Is this a repeatable course? ☐ Yes ☐ No
 If yes, this course may be taken _______ times. Will the course be repeated within the same semester/term? ☐ Yes ☐ No

7. Has this course been taught as a 489/689? ☐ Yes ☐ No
 If yes, how many times? _______ Indicate the number of students enrolled for each academic period it was taught.

8. This course will be:
 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)
 B.S. in spatial science
 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)
 B.S. forest science

9. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.

10. Prefix | Course # | Title (exclude punctuation)
 | SPSC 398 | INTERP OF AERIAL PHOTO |

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>SCH</th>
<th>Subject Matter Content Code</th>
<th>Admin. Unit</th>
<th>Acad. Year</th>
<th>FICE Code</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>03</td>
<td>03</td>
<td>03</td>
<td>05</td>
<td>01</td>
<td>00</td>
<td>05</td>
</tr>
</tbody>
</table>

Do not complete shaded area.

Approval recommended by:

J. Whisenant
9/22/06

Head of Department

Chair, College Review Committee
10/2/06

Dean of College

Head of Department (if cross-listed course)
9/18/06

Date

Dean of College

Date

Submitted to Coordinating Board by:

Dean of College

Date

Director of Academic Support Services

Date

Effective Date

* Attach a syllabus according to the guidelines on the Internet site www.tamu.edu/admissions/oaras. To have this form reviewed, please send to Linda F. Lacev, Mail Stop 1265 or fax to 847-8737.

UAR/AS-1099

2 of 6 L
Texas A&M University Dept. of Forest Science
 Dept. of Geography

Course title Interpretation of Aerial Photographs
Course number SPSC 398
Course date Fall Semester 2006 (August 28, 2006 through December 11, 2006)
Location Lecture: HFSB 105; Lab: Centeq B 214 (SSL teaching lab)
Meeting day(s) Monday & Wednesday
Meeting time(s) Lecture MW: 12:40 - 1:30pm; Lab W: 2:00 - 4:50pm

Instructor Information
Name Sorin Popescu http://www-ssl.tamu.edu/personnel/s_popescu/
Email s-popescu@tamu.edu
Office location Centeq B 221D
Phone 862-2614
WebCT page http://elearning.tamu.edu/ (follow link to WebCT LOGINS @ TAMU
Office hours Open door policy, though I recommend emailing/calling for appointments. Please put “398” in the subject in email messages regarding this class to receive prompt attention. Please avoid “drop-ins” just before class on Monday and Wednesday.
Teaching Assist. Muge Mutlu, mugemutlu@tamu.edu

Course description
Course learning outcomes
Introduce students to the principles, equipment, and techniques used to:
 • Analyze film and digital sensor characteristics for interpreting aerial photographs
 • Interpret aerial photographs and digital imagery
 • Derive direct and indirect measurements on aerial photography
 • Map earth features using aerial photographs and digital imagery
• Calculate, report, and interpret map accuracy, and
• Derive solutions to environmental problems using aerial photos

Textbooks

Required reading

Supplemental text on reserve at West Campus Library

Grading

<table>
<thead>
<tr>
<th>Grading Category</th>
<th>Percentage</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 point break-out system</td>
<td>90.0 – 100 = A</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td>80.0 - 89.9 = B</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>70.0 – 79.9 = C</td>
<td>Satisfactory</td>
</tr>
<tr>
<td></td>
<td>60.0 – 69.9 = D</td>
<td>Passing</td>
</tr>
<tr>
<td></td>
<td>00.0 – 59.9 = F</td>
<td>Fail</td>
</tr>
</tbody>
</table>

Laboratories
30 % All lab work is due at the *beginning* of the following lab period

Homework
10 %

Quizzes
10 % Will be administered through webCT; pop-quizzes in class

Midterm exam
20 % Wednesday, Oct. 11th, during lecture/lab

Final exam
30 % Monday, Dec. 11th, 10:30am – 12:30pm.

You will receive a registration block if checked out lab equipment is not returned before the day of the final exam.

Course outline

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>History of aerial photography; definitions of terms; electromagnetic spectrum</td>
<td>Chapter 1, part of Chapter 2</td>
</tr>
<tr>
<td>2</td>
<td>Geometry of vertical airphotos, principles of stereoscopic vision</td>
<td>Chapters: 2 and 3</td>
</tr>
<tr>
<td>3</td>
<td>Photogrammetry: scale of vertical airphotos; horizontal measurements</td>
<td>Chapters: 4 and 5</td>
</tr>
<tr>
<td>4</td>
<td>Photogrammetry: vertical measurements</td>
<td>Chapter 6 and 7</td>
</tr>
<tr>
<td>5</td>
<td>Digital imagery; orthophotography, map projections</td>
<td>Chapters: 8 and 9</td>
</tr>
<tr>
<td>6</td>
<td>GPS, GIS</td>
<td>Chapters: 10 and 12</td>
</tr>
<tr>
<td>7</td>
<td>Photo interpretation: human factors, films, filters</td>
<td>Chapters: 13 and 14</td>
</tr>
<tr>
<td>8</td>
<td>Photo interpretation: principles and techniques</td>
<td>Chapter 15</td>
</tr>
</tbody>
</table>
9 Land use, land cover Chapters: 16 and 18
10 Geology, soil, engineering and environmental applications Chapters: 17 and 19
11 Vegetation analysis, forestry applications Chapters: 20 and 21
12 Natural resources inventory, statistics and sampling techniques, mapping accuracy Chapters: 22, 23, 24, 25
13 Introduction to remote sensing, history, sensors Chapter 26
14 Active remote sensors: lidar and radar Chapter 27

Laboratory schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geometry of aerial photos, principal and conjugate point, stereo vision</td>
<td>Centeq B 214</td>
</tr>
<tr>
<td>2</td>
<td>Determining Distance, Angles, and Area using Air Photos</td>
<td>Centeq B 214</td>
</tr>
<tr>
<td>3</td>
<td>Height Determination from Air Photos I: Relief Displacement and Monoscopic Parallax</td>
<td>Centeq B 214</td>
</tr>
<tr>
<td>4</td>
<td>Height Determination from Air Photos: Stereoscopic Parallax</td>
<td>Centeq B 214</td>
</tr>
<tr>
<td>5</td>
<td>Field Collection of Global Positioning System (GPS) Data</td>
<td>Centeq B 214</td>
</tr>
<tr>
<td>6</td>
<td>Differential correction of GPS data</td>
<td>Centeq B 214</td>
</tr>
<tr>
<td>7</td>
<td>Midterm exam</td>
<td>TBA</td>
</tr>
<tr>
<td>8</td>
<td>Principles and techniques of aerial photo interpretation</td>
<td>Centeq B 214</td>
</tr>
<tr>
<td>9</td>
<td>Land-use/land-cover mapping using aerial photography</td>
<td>Centeq B 214</td>
</tr>
<tr>
<td>10</td>
<td>Digital spatial data sources: DEM, DOQQs, DRG, DLG</td>
<td>Centeq B 214</td>
</tr>
<tr>
<td>11</td>
<td>Finding GIS Data Layers and Viewing them in ArcView 8.1</td>
<td>Centeq B 214</td>
</tr>
<tr>
<td>12</td>
<td>Onscreen digitizing</td>
<td>Centeq B 214</td>
</tr>
<tr>
<td>13</td>
<td>Map accuracy assessment</td>
<td>Centeq B 214</td>
</tr>
<tr>
<td>14</td>
<td>Review of laboratory topics</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Laboratory, Homework, and Exam policy

The University policy on Scholastic Dishonesty will be enforced in this course. While you are encouraged to help each other understand concepts and techniques, all work submitted should be your own. Exceptions to this policy will be explicitly noted by the instructor and should not be assumed by students. Make-up exams will not be offered except for a valid reason (per University rules).

All laboratory and homework assignments are to be completed in a neat, logical, and clear fashion. A 10% reduction in grade will be assessed for each weekday a lab or homework assignment is handed in late (up to a 50% reduction). Assignments late more than one week will not be accepted without documented excuse (per University rules). Request for exceptions to this policy will be discussed with the instructor and should be documented with valid reasons as per University rules. All lab work is designed to be completed in class.
Aggie Code of Honor

Aggies do not lie, cheat, or steal, nor do they tolerate those who do.

The Aggie Code of Honor functions as a symbol to all Aggies, promoting understanding and loyalty to truth and confidence in each other.

Prerequisites: good academic standing

Required laboratory supplies

- Engineer’s scale
- Plastic overlays: clear acetate, dura-lar, mylar
- Overlay marker (permanent): extra/ultra fine point, such as Sharpie Extra Fine Point, Pilot, Pentel, etc. Colors: black, green, blue, red.
- Drafting tape (small roll, not masking tape!)
- Protractor (reading to the nearest degree)
- Binder clips (when turning in homework/lab assignments, to bind together mylar and photos)

Optional: **calculator**, pins (with plastic handle), eraser, ruler

Americans with Disabilities Act

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the department of Student Life, Services for Students with Disabilities in Room B118 of Cain Hall. The phone number is 845-1637.